AN UNCERTAINTY-WEIGHTED ASYNCHRONOUS ADMM METHOD FOR PARALLEL PDE PARAMETER ESTIMATION

被引:6
|
作者
Fung, Samy Wu [1 ]
Ruthotto, Lars [1 ]
机构
[1] Emory Univ, Dept Math & Comp Sci, Atlanta, GA 30322 USA
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2019年 / 41卷 / 05期
基金
美国国家科学基金会;
关键词
PDE-constrained optimization; parameter estimation; alternating direction method of multipliers; inverse problems; distributed optimization; multiphysics inversion; ALTERNATING DIRECTION METHOD; INVERSE PROBLEMS; MATRIX; OPTIMIZATION; REDUCTION; ALGORITHM; APPROXIMATION; JULIA;
D O I
10.1137/18M119166X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a global variable consensus alternating direction method of multipliers (ADMM) algorithm for estimating parameters of partial differential equations (PDEs) asynchronously and in parallel. Motivated by problems with many measurements, we partition the data and distribute the resulting subproblems among the available workers. Since each subproblem can be associated with different forward models and right-hand sides, this provides ample options for tailoring the method to different applications, including multisource and multiphysics PDE parameter estimation problems. We also consider an asynchronous variant of consensus ADMM to reduce communication and latency. Our key contribution is a novel weighting scheme that empirically increases the progress made in early iterations of the consensus ADMM scheme and is attractive when using a large number of subproblems. This makes consensus ADMM competitive for solving PDE parameter estimation, which incurs immense cost per iteration. The weights in our scheme are related to the uncertainty associated with the solutions of each subproblem. We exemplarily show that the weighting scheme combined with the asynchronous implementation reduces the time-to-solution and lowers the communication costs for a 3D single-physics and multiphysics PDE parameter estimation problems.
引用
收藏
页码:S129 / S148
页数:20
相关论文
共 50 条
  • [31] SLIDING-WINDOWED WEIGHTED RECURSIVE LEAST-SQUARES METHOD FOR PARAMETER-ESTIMATION
    CHOI, BY
    BIEN, Z
    ELECTRONICS LETTERS, 1989, 25 (20) : 1381 - 1382
  • [32] Parameter Estimation of the Negative Binomial-New Weighted Lindley Distribution by the Method of Maximum Likelihood
    Thongteeraparp, Ampai
    Volodin, A.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2020, 41 (03) : 430 - 434
  • [33] PARAMETER ESTIMATION FROM AN OUTCOME-DEPENDENT ENRICHED SAMPLE USING WEIGHTED LIKELIHOOD METHOD
    Kang, Qing
    Nelson, Paul I.
    Vahl, Christopher I.
    STATISTICA SINICA, 2010, 20 (04) : 1529 - 1550
  • [34] Fisher Scoring Method for Parameter Estimation of Geographically Weighted Ordinal Logistic Regression (GWOLR) Model
    Widyaningsih, Purnami
    Saputro, Dewi Retno Sari
    Putri, Aulia Nugrahani
    INTERNATIONAL CONFERENCE ON MATHEMATICS: EDUCATION, THEORY AND APPLICATION, 2017, 855
  • [35] Estimation of parameter uncertainty for an activated sludge model using Bayesian inference: a comparison with the frequentist method
    Zonta, Zivko J.
    Flotats, Xavier
    Magri, Albert
    ENVIRONMENTAL TECHNOLOGY, 2014, 35 (13) : 1618 - 1629
  • [36] PARAMETER ESTIMATION AND UNCERTAINTY ANALYSIS OF ORYZA_V3 MODEL USING THE GLUE METHOD
    Tan, J.
    Duan, Q.
    TRANSACTIONS OF THE ASABE, 2019, 62 (04) : 941 - 949
  • [37] An adaptive parallel tempering method for the dynamic data-driven parameter estimation of nonlinear models
    Armstrong, Matthew J.
    Beris, Antony N.
    Wagner, Norman J.
    AICHE JOURNAL, 2017, 63 (06) : 1937 - 1958
  • [38] A semi-supervised deep learning fault diagnosis method based on uncertainty estimation and weighted labels
    Huang, Hanxin
    Zhou, Funa
    Jia, Pengpeng
    Wen, Yanqi
    2023 IEEE 12TH DATA DRIVEN CONTROL AND LEARNING SYSTEMS CONFERENCE, DDCLS, 2023, : 1410 - 1415
  • [39] BayesWHAM: A Bayesian Approach for Free Energy Estimation, Reweighting, and Uncertainty Quantification in the Weighted Histogram Analysis Method
    Ferguson, Andrew L.
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2017, 38 (18) : 1583 - 1605
  • [40] Heterogeneous parallel computing accelerated generalized likelihood uncertainty estimation (GLUE) method for fast hydrological model uncertainty analysis purpose
    Guangyuan Kan
    Xiaoyan He
    Liuqian Ding
    Jiren Li
    Yang Hong
    Ke Liang
    Engineering with Computers, 2020, 36 : 75 - 96