Preview of machine learning the quantum-chemical properties of metal-organic frameworks for accelerated materials discovery

被引:6
|
作者
Callaghan, Sarah [1 ]
机构
[1] Cell Press, 50 Hampshire St, Cambridge, MA USA
来源
PATTERNS | 2021年 / 2卷 / 04期
关键词
D O I
10.1016/j.patter.2021.100239
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Metal-organic frameworks (MOFs) are a class of chemical compounds used for the storage of gases such as hydrogen and carbon dioxide. They also have potential applications in gas purification, catalysis and as supercapacitors. A database of quantum-chemical properties for over 14,000 MOF structures (the ``QMOF database'') has been created and made available to the community along with code for machine learning and other related resources.
引用
收藏
页数:2
相关论文
共 50 条
  • [31] Prediction of water stability of metal-organic frameworks using machine learning
    Batra, Rohit
    Chen, Carmen
    Evans, Tania G.
    Walton, Krista S.
    Ramprasad, Rampi
    NATURE MACHINE INTELLIGENCE, 2020, 2 (11) : 704 - +
  • [32] Prediction of Metal-Organic Frameworks with Phase Transition via Machine Learning
    Karsakov, Grigory V.
    Shirobokov, Vladimir P.
    Kulakova, Alena
    Milichko, Valentin A.
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2024, 15 (11): : 3089 - 3095
  • [33] Analyzing acetylene adsorption of metal-organic frameworks based on machine learning
    Peisong Yang
    Gang Lu
    Qingyuan Yang
    Lei Liu
    Xin Lai
    Duli Yu
    GreenEnergy&Environment, 2022, 7 (05) : 1062 - 1070
  • [34] Analyzing acetylene adsorption of metal-organic frameworks based on machine learning
    Yang, Peisong
    Lu, Gang
    Yang, Qingyuan
    Liu, Lei
    Lai, Xin
    Yu, Duli
    GREEN ENERGY & ENVIRONMENT, 2022, 7 (05) : 1062 - 1070
  • [35] Machine learning insights into predicting biogas separation in metal-organic frameworks
    Cooley, Isabel
    Boobier, Samuel
    Hirst, Jonathan D.
    Besley, Elena
    COMMUNICATIONS CHEMISTRY, 2024, 7 (01)
  • [36] Transfer learning for metal-organic frameworks
    Pan, Jie
    NATURE COMPUTATIONAL SCIENCE, 2023, 3 (4): : 280 - 280
  • [37] Machine Learning-Driven Discovery and Structure-Activity Relationship Analysis of Conductive Metal-Organic Frameworks
    Lin, Jinglong
    Zhang, Huibao
    Asadi, Mojgan
    Zhao, Kai
    Yang, Luming
    Fan, Yunlong
    Zhu, Jintao
    Liu, Qianyi
    Sun, Lei
    Xie, Wen Jun
    Duan, Chenru
    Mo, Fanyang
    Dou, Jin-Hu
    CHEMISTRY OF MATERIALS, 2024, 36 (11) : 5436 - 5445
  • [38] Tailoring properties of metal-organic frameworks
    Park, Jihye
    Feng, Dawei
    Bao, Zhenan
    Zhou, Hongcai
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 254
  • [39] Mechanical properties of metal-organic frameworks
    Redfern, Louis R.
    Farha, Omar K.
    CHEMICAL SCIENCE, 2019, 10 (46) : 10666 - 10679
  • [40] Topological properties of metal-organic frameworks
    Awais, Hafiz Muhammad
    Jamal, Muhammad
    Javaid, Muhammad
    MAIN GROUP METAL CHEMISTRY, 2020, 43 (01) : 67 - 76