Linear optical quantum computing with photonic qubits

被引:2136
|
作者
Kok, Pieter
Munro, W. J.
Nemoto, Kae
Ralph, T. C.
Dowling, Jonathan P.
Milburn, G. J.
机构
[1] Univ Oxford, Dept Mat, Oxford OX1 3PH, England
[2] Hewlett Packard Labs, Bristol BS34 8QZ, Avon, England
[3] Natl Inst Informat, Chiyoda Ku, Tokyo 1018430, Japan
[4] Univ Queensland, Ctr Quantum Comp Technol, Brisbane, Qld 4072, Australia
[5] Louisiana State Univ, Hearne Inst Theoret Phys, Dept Phys & Astron, Baton Rouge, LA 70803 USA
[6] Texas A&M Univ, Inst Quantum Studies, Dept Phys, College Pk, TX 77843 USA
[7] Univ Queensland, Ctr Quantum Comp Technol, St Lucia, Qld 4072, Australia
关键词
D O I
10.1103/RevModPhys.79.135
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Linear optics with photon counting is a prominent candidate for practical quantum computing. The protocol by Knill, Laflamme, and Milburn [2001, Nature (London) 409, 46] explicitly demonstrates that efficient scalable quantum computing with single photons, linear optical elements, and projective measurements is possible. Subsequently, several improvements on this protocol have started to bridge the gap between theoretical scalability and practical implementation. The original theory and its improvements are reviewed, and a few examples of experimental two-qubit gates are given. The use of realistic components, the errors they induce in the computation, and how these errors can be corrected is discussed.
引用
收藏
页码:135 / 174
页数:40
相关论文
共 50 条
  • [41] Quantum computing with sine-Gordon qubits
    Wang, Dong-Sheng
    PHYSICAL REVIEW B, 2019, 100 (02)
  • [42] Quantum computing with controlled-NOT and few qubits
    Bruss, D
    Ekert, A
    Huelga, SF
    Pan, JW
    Zeilinger, A
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1997, 355 (1733): : 2259 - 2266
  • [43] Computing with Quantum Cats: From Colossus to Qubits
    Docksai, Rick
    FUTURIST, 2014, 48 (04) : 55 - 55
  • [44] Spintronics and quantum computing: switching mechanisms for qubits
    Leuenberger, MN
    Loss, D
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2001, 10 (1-3): : 452 - 457
  • [45] Special issue on quantum computing with superconducting qubits
    Korotkov, Alexander N.
    QUANTUM INFORMATION PROCESSING, 2009, 8 (2-3) : 51 - 54
  • [46] QUANTUM COMPUTING Qubits break the sound barrier
    Schaetz, Tobias
    NATURE, 2018, 555 (7694) : 29 - 30
  • [47] A quantum memory for orbital angular momentum photonic qubits
    Nicolas A.
    Veissier L.
    Giner L.
    Giacobino E.
    Maxein D.
    Laurat J.
    Nature Photonics, 2014, 8 (3) : 234 - 238
  • [48] Quantum filter for nonlocal polarization properties of photonic qubits
    Hofmann, HF
    Takeuchi, S
    PHYSICAL REVIEW LETTERS, 2002, 88 (14) : 4
  • [49] A quantum memory for orbital angular momentum photonic qubits
    Nicolas, A.
    Veissier, L.
    Giner, L.
    Giacobino, E.
    Maxein, D.
    Laurat, J.
    NATURE PHOTONICS, 2014, 8 (03) : 234 - 238
  • [50] A hybrid quantum photonic interface for solid state qubits
    Englund, Dirk
    Li, Luozhou
    Hodges, Jonathan
    Shields, Brendan
    Rivoire, Kelley
    Hatami, Fariba
    Vuckovic, Jelena
    Park, Hongkun
    Lukin, Mikhail
    LASER RESONATORS AND BEAM CONTROL XIII, 2011, 7913