Linear optical quantum computing with photonic qubits

被引:2136
|
作者
Kok, Pieter
Munro, W. J.
Nemoto, Kae
Ralph, T. C.
Dowling, Jonathan P.
Milburn, G. J.
机构
[1] Univ Oxford, Dept Mat, Oxford OX1 3PH, England
[2] Hewlett Packard Labs, Bristol BS34 8QZ, Avon, England
[3] Natl Inst Informat, Chiyoda Ku, Tokyo 1018430, Japan
[4] Univ Queensland, Ctr Quantum Comp Technol, Brisbane, Qld 4072, Australia
[5] Louisiana State Univ, Hearne Inst Theoret Phys, Dept Phys & Astron, Baton Rouge, LA 70803 USA
[6] Texas A&M Univ, Inst Quantum Studies, Dept Phys, College Pk, TX 77843 USA
[7] Univ Queensland, Ctr Quantum Comp Technol, St Lucia, Qld 4072, Australia
关键词
D O I
10.1103/RevModPhys.79.135
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Linear optics with photon counting is a prominent candidate for practical quantum computing. The protocol by Knill, Laflamme, and Milburn [2001, Nature (London) 409, 46] explicitly demonstrates that efficient scalable quantum computing with single photons, linear optical elements, and projective measurements is possible. Subsequently, several improvements on this protocol have started to bridge the gap between theoretical scalability and practical implementation. The original theory and its improvements are reviewed, and a few examples of experimental two-qubit gates are given. The use of realistic components, the errors they induce in the computation, and how these errors can be corrected is discussed.
引用
收藏
页码:135 / 174
页数:40
相关论文
共 50 条
  • [31] Linear Optical Quantum Computation with Frequency-Comb Qubits and Passive Devices
    Yamazaki, Tomohiro
    Arizono, Tomoaki
    Kobayashi, Toshiki
    Ikuta, Rikizo
    Yamamoto, Takashi
    PHYSICAL REVIEW LETTERS, 2023, 130 (20)
  • [32] Quantum PIC simulation tool for Linear Optical Quantum Computing Gates
    Ntanos, Argiris
    Giannoulis, Giannis
    Stathis, Aristeidis
    Zavitsanos, Dimitris
    Avramopoulos, Hercules
    QUANTUM TECHNOLOGIES 2024, 2024, 12993
  • [33] Verification of Linear Optical Quantum Computing using Quantum Process Calculus
    Franke-Arnold, Sonja
    Gay, Simon J.
    Puthoor, Ittoop Vergheese
    ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2014, (160): : 111 - 129
  • [34] Ultrahigh-fidelity qubits for quantum computing
    Raizen, Mark G.
    Wan, Shou-Pu
    Zhang, Chuanwei
    Niu, Qian
    PHYSICAL REVIEW A, 2009, 80 (03):
  • [35] Quantum computing with spin qubits in semiconductor structures
    Privman, V
    Mozyrsky, D
    Vagner, ID
    COMPUTER PHYSICS COMMUNICATIONS, 2002, 146 (03) : 331 - 338
  • [36] Scalable quantum computing with Josephson charge qubits
    You, JQ
    Tsai, JS
    Nori, F
    PHYSICAL REVIEW LETTERS, 2002, 89 (19)
  • [37] Special issue on quantum computing with superconducting qubits
    Alexander N. Korotkov
    Quantum Information Processing, 2009, 8 : 51 - 54
  • [38] Quantum Computing with Trapped Ion Hyperfine Qubits
    Blinov, B. B.
    Leibfried, D.
    Monroe, C.
    Wineland, D. J.
    QUANTUM INFORMATION PROCESSING, 2004, 3 (1-5) : 45 - 59
  • [39] Quantum Computing with Trapped Ion Hyperfine Qubits
    B. B. Blinov
    D. Leibfried
    C. Monroe
    D. J. Wineland
    Quantum Information Processing, 2004, 3 : 45 - 59
  • [40] Quantum computing - Teaching qubits new tricks
    Seife, C
    SCIENCE, 2005, 309 (5732) : 238 - 238