Linear optical quantum computing with photonic qubits

被引:2136
|
作者
Kok, Pieter
Munro, W. J.
Nemoto, Kae
Ralph, T. C.
Dowling, Jonathan P.
Milburn, G. J.
机构
[1] Univ Oxford, Dept Mat, Oxford OX1 3PH, England
[2] Hewlett Packard Labs, Bristol BS34 8QZ, Avon, England
[3] Natl Inst Informat, Chiyoda Ku, Tokyo 1018430, Japan
[4] Univ Queensland, Ctr Quantum Comp Technol, Brisbane, Qld 4072, Australia
[5] Louisiana State Univ, Hearne Inst Theoret Phys, Dept Phys & Astron, Baton Rouge, LA 70803 USA
[6] Texas A&M Univ, Inst Quantum Studies, Dept Phys, College Pk, TX 77843 USA
[7] Univ Queensland, Ctr Quantum Comp Technol, St Lucia, Qld 4072, Australia
关键词
D O I
10.1103/RevModPhys.79.135
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Linear optics with photon counting is a prominent candidate for practical quantum computing. The protocol by Knill, Laflamme, and Milburn [2001, Nature (London) 409, 46] explicitly demonstrates that efficient scalable quantum computing with single photons, linear optical elements, and projective measurements is possible. Subsequently, several improvements on this protocol have started to bridge the gap between theoretical scalability and practical implementation. The original theory and its improvements are reviewed, and a few examples of experimental two-qubit gates are given. The use of realistic components, the errors they induce in the computation, and how these errors can be corrected is discussed.
引用
收藏
页码:135 / 174
页数:40
相关论文
共 50 条
  • [1] Silicon photonic quantum computing with spin qubits
    Yan, Xiruo
    Gitt, Sebastian
    Lin, Becky
    Witt, Donald
    Abdolahi, Mahssa
    Afifi, Abdelrahman
    Azem, Adan
    Darcie, Adam
    Wu, Jingda
    Awan, Kashif
    Mitchell, Matthew
    Pfenning, Andreas
    Chrostowski, Lukas
    Young, Jeff F.
    APL PHOTONICS, 2021, 6 (07)
  • [2] Quantum Entanglement between Optical and Microwave Photonic Qubits
    Meesala, Srujan
    Lake, David
    Wood, Steven
    Chiappina, Piero
    Zhong, Changchun
    Beyer, Andrew D.
    Shaw, Matthew D.
    Jiang, Liang
    Painter, Oskar
    PHYSICAL REVIEW X, 2024, 14 (03):
  • [3] LINEAR OPTICAL QUANTUM COMPUTING
    Miroshnichenko, G. P.
    NANOSYSTEMS-PHYSICS CHEMISTRY MATHEMATICS, 2012, 3 (04): : 36 - 53
  • [4] Experimental photonic state engineering and quantum control of two optical qubits
    Barz, Stefanie
    Ma, Xiao-song
    Dakic, Borivoje
    Zeilinger, Anton
    Walther, Philip
    QUANTUM COMMUNICATION, MEASUREMENT AND COMPUTING (QCMC): THE TENTH INTERNATIONAL CONFERENCE, 2011, 1363
  • [5] QUANTUM COMPUTING Silicon qubits
    Maragkou, Maria
    NATURE MATERIALS, 2015, 14 (05) : 468 - 468
  • [6] Two-qubits Controlled-unitary Quantum Gates for Quantum Computing by Silicon Photonic Chip
    Huang, J. G.
    Kwek, L. C.
    Gong, J. B.
    Gao, W. B.
    Chong, Y. D.
    Ser, W.
    Liu, A. Q.
    2017 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2017,
  • [7] PHOTONIC QUBITS A quantum delivery note
    Lvovsky, A. I.
    NATURE PHYSICS, 2013, 9 (01) : 5 - 6
  • [8] Cyclical quantum memory for photonic qubits
    Pittman, TB
    Franson, JD
    PHYSICAL REVIEW A, 2002, 66 (06): : 4
  • [9] Cyclical quantum memory for photonic qubits
    Pittman, T.B.
    Franson, J.D.
    Physical Review A - Atomic, Molecular, and Optical Physics, 2002, 66 (06): : 623021 - 623024
  • [10] Quantum state engineering with photonic qubits
    Gheri, KM
    Törmä, P
    Zoller, P
    ACTA PHYSICA SLOVACA, 1999, 49 (04) : 523 - 532