Non-Parametric Bayesian Registration (NParBR) of Body Tumors in DCE-MRI Data

被引:2
|
作者
Pilutti, David [1 ]
Strumia, Maddalena [1 ,2 ,3 ]
Buechert, Martin [1 ]
Hadjidemetriou, Stathis [1 ,4 ]
机构
[1] Univ Med Ctr Freiburg, Dept Radiol Med Phys, D-79106 Freiburg, Germany
[2] German Canc Res Ctr, D-69121 Heidelberg, Germany
[3] German Canc Consortium DKTK, D-69121 Heidelberg, Germany
[4] Univ Hlth Sci, Inst Biomed Image Anal Med Informat & Technol, Dept Biomed Sci & Engn, A-6060 Hall In Tirol, Austria
关键词
Image time series analysis; joint histogram; non-parametric restoration; non-rigid registration; NONRIGID REGISTRATION; IMAGE REGISTRATION; MUTUAL-INFORMATION; BREAST; BRAIN; LIVER; DEFORMATION; SIMILARITY; ALGORITHM; MOTION;
D O I
10.1109/TMI.2015.2506338
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The identification of tumors in the internal organs of chest, abdomen, and pelvis anatomic regions can be performed with the analysis of Dynamic Contrast Enhanced Magnetic Resonance Imaging (DCE-MRI) data. The contrast agent is accumulated differently by pathologic and healthy tissues and that results in a temporally varying contrast in an image series. The internal organs are also subject to potentially extensive movements mainly due to breathing, heart beat, and peristalsis. This contributes to making the analysis of DCE-MRI datasets challenging as well as time consuming. To address this problem we propose a novel pairwise non-rigid registration method with a Non-Parametric Bayesian Registration (NParBR) formulation. The NParBR method uses a Bayesian formulation that assumes a model for the effect of the distortion on the joint intensity statistics, a non-parametric prior for the restored statistics, and also applies a spatial regularization for the estimated registration with Gaussian filtering. A minimally biased intra-dataset atlas is computed for each dataset and used as reference for the registration of the time series. The time series registration method has been tested with 20 datasets of liver, lungs, intestines, and prostate. It has been compared to the B-Splines and to the SyN methods with results that demonstrate that the proposed method improves both accuracy and efficiency.
引用
收藏
页码:1025 / 1035
页数:11
相关论文
共 50 条
  • [21] Bayesian non-parametric conditional copula estimation of twin data
    Dalla Valle, Luciana
    Leisen, Fabrizio
    Rossini, Luca
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2018, 67 (03) : 523 - 548
  • [22] Texture-based simultaneous registration and segmentation of breast DCE-MRI
    Gong, Yang Can
    Brady, Michael
    DIGITAL MAMMOGRAPHY, PROCEEDINGS, 2008, 5116 : 174 - 180
  • [23] A Bayesian non-parametric method to detect clusters in Planck data
    Diego, JM
    Vielva, P
    Martínez-González, E
    Silk, J
    Sanz, JL
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2002, 336 (04) : 1351 - 1363
  • [24] Fully automated deformable registration of breast DCE-MRI and PET/CT
    Dmitriev, I. D.
    Loo, C. E.
    Vogel, W. V.
    Pengel, K. E.
    Gilhuijs, K. G. A.
    PHYSICS IN MEDICINE AND BIOLOGY, 2013, 58 (04): : 1221 - 1233
  • [25] Are Complex DCE-MRI Models Supported by Clinical Data?
    Duan, Chong
    Kallehauge, Jesper F.
    Bretthorst, G. Larry
    Tanderup, Kari
    Ackerman, Joseph J. H.
    Garbow, Joel R.
    MAGNETIC RESONANCE IN MEDICINE, 2017, 77 (03) : 1329 - 1339
  • [26] Optimization of DCE-MRI protocol for the assessment of patients with brain tumors
    Artzi, Moran
    Liberman, Gilad
    Nadav, Guy
    Blumenthal, Deborah T.
    Bokstein, Felix
    Aizenstein, Orna
    Ben Bashat, Dafna
    MAGNETIC RESONANCE IMAGING, 2016, 34 (09) : 1242 - 1247
  • [27] DCE-MRI Data Analysis for Cancer Area Classification
    Castellani, U.
    Cristani, M.
    Daducci, A.
    Farace, P.
    Marzola, P.
    Murino, V.
    Sbarbati, A.
    METHODS OF INFORMATION IN MEDICINE, 2009, 48 (03) : 248 - 253
  • [28] Renal DCE-MRI Model Selection Using Bayesian Probability Theory
    Beeman, Scott C.
    Osei-Owusu, Patrick
    Duan, Chong
    Engelbach, John
    Bretthorst, G. Larry
    Ackerman, Joseph J. H.
    Blumer, Kendall J.
    Garbow, Joel R.
    TOMOGRAPHY, 2015, 1 (01) : 61 - 68
  • [29] Non-parametric Bayesian annotator combination
    Servajean, M.
    Chailan, R.
    Joly, A.
    INFORMATION SCIENCES, 2018, 436 : 131 - 145
  • [30] An unsupervised and non-parametric bayesian classifier
    Zribi, M
    Ghorbel, F
    PATTERN RECOGNITION LETTERS, 2003, 24 (1-3) : 97 - 112