LOWER BOUND ON THE NUMBER OF HAMILTONIAN CYCLES OF GENERALIZED PETERSEN GRAPHS

被引:1
|
作者
Lu, Weihua [1 ]
Yang, Chao [2 ]
Ren, Han [3 ,4 ]
机构
[1] Shanghai Maritime Univ, Coll Arts & Sci, Shanghai 201306, Peoples R China
[2] Shanghai Univ Engn Sci, Sch Math Phys & Stat, Shanghai 201620, Peoples R China
[3] East China Normal Univ, Dept Math, Shanghai 200241, Peoples R China
[4] Shanghai Key Lab PMMP, Shanghai 200241, Peoples R China
关键词
generalized Petersen graph; Hamiltonian cycle; partition number; 1-factor;
D O I
10.7151/dmgt.2141
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we investigate the number of Hamiltonian cycles of a generalized Petersen graph P(N, k) and prove that psi(P(N, 3) >= N center dot alpha(N) where psi(P(N, 3)) is the number of Hamiltonian cycles of P(N, 3) and alpha(N) satisfies that for any epsilon > 0, there exists a positive integer M such that when N > M, ((1-epsilon)(1-r(3))/6r(3)+5r(2)+3)(1/r)(N+2) < alpha N < ((1+epsilon)(1-r(3))/6r(3)+5r(2)+3)(1/r)(N+2), where 1/r = max {vertical bar 1/r (j)vertical bar j = 1, 2,..., 6} and each r(j) is a root of equation x(6) + x(5) + x(3) - 1 = 0, r approximate to 0.782. This shows that psi(P(N, 3) is exponential in N and also deduces that the number of 1-factors of P(N, 3) is exponential in N.
引用
收藏
页码:297 / 305
页数:9
相关论文
共 50 条
  • [41] The exact 2-domination number of generalized Petersen graphs
    Xue-gang Chen
    Xue-song Zhao
    Proceedings - Mathematical Sciences, 2020, 130
  • [42] On the domination number of generalized Petersen graphs P(n, 2)
    Fu Xueliang
    Yang Yuansheng
    Jiang Baoqi
    DISCRETE MATHEMATICS, 2009, 309 (08) : 2445 - 2451
  • [43] On the odd girth and the circular chromatic number of generalized Petersen graphs
    Daneshgar, Amir
    Madani, Meysam
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2017, 33 (03) : 897 - 923
  • [44] The Bondage Number of Generalized Petersen Graphs P(n, 2)
    Pei, Lidan
    Pan, Xiangfeng
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2020, 2020
  • [45] The locating chromatic number of generalized Petersen graphs with small order
    Sakri, Redha
    Abbas, Moncef
    EXAMPLES AND COUNTEREXAMPLES, 2021, 5
  • [46] A lower bound on the number of elementary components of essentially disconnected generalized polyomino graphs
    Xiaoling Ke
    Journal of Mathematical Chemistry, 2012, 50 : 131 - 140
  • [47] On the Packing Number of Generalized Petersen Graphs P(n, 2)
    Yang Yuansheng
    Fu Xueliang
    Jiang Baoqi
    ARS COMBINATORIA, 2012, 104 : 23 - 32
  • [48] A lower bound on the number of elementary components of essentially disconnected generalized polyomino graphs
    Ke, Xiaoling
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2012, 50 (01) : 131 - 140
  • [49] On the domination number of generalized Petersen graphs P(n,3)
    Fu Xueliang
    Yang Yuansheng
    Jiang Baoqi
    ARS COMBINATORIA, 2007, 84 : 373 - 383
  • [50] On the [1,2]-domination number of generalized Petersen graphs
    Chen, Lily
    Ma, Yingbin
    Shi, Yongtang
    Zhao, Yan
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 327 : 1 - 7