LOWER BOUND ON THE NUMBER OF HAMILTONIAN CYCLES OF GENERALIZED PETERSEN GRAPHS

被引:1
|
作者
Lu, Weihua [1 ]
Yang, Chao [2 ]
Ren, Han [3 ,4 ]
机构
[1] Shanghai Maritime Univ, Coll Arts & Sci, Shanghai 201306, Peoples R China
[2] Shanghai Univ Engn Sci, Sch Math Phys & Stat, Shanghai 201620, Peoples R China
[3] East China Normal Univ, Dept Math, Shanghai 200241, Peoples R China
[4] Shanghai Key Lab PMMP, Shanghai 200241, Peoples R China
关键词
generalized Petersen graph; Hamiltonian cycle; partition number; 1-factor;
D O I
10.7151/dmgt.2141
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we investigate the number of Hamiltonian cycles of a generalized Petersen graph P(N, k) and prove that psi(P(N, 3) >= N center dot alpha(N) where psi(P(N, 3)) is the number of Hamiltonian cycles of P(N, 3) and alpha(N) satisfies that for any epsilon > 0, there exists a positive integer M such that when N > M, ((1-epsilon)(1-r(3))/6r(3)+5r(2)+3)(1/r)(N+2) < alpha N < ((1+epsilon)(1-r(3))/6r(3)+5r(2)+3)(1/r)(N+2), where 1/r = max {vertical bar 1/r (j)vertical bar j = 1, 2,..., 6} and each r(j) is a root of equation x(6) + x(5) + x(3) - 1 = 0, r approximate to 0.782. This shows that psi(P(N, 3) is exponential in N and also deduces that the number of 1-factors of P(N, 3) is exponential in N.
引用
收藏
页码:297 / 305
页数:9
相关论文
共 50 条
  • [21] The fibonacci number of generalized Petersen graphs
    Wagner, Stephan G.
    FIBONACCI QUARTERLY, 2006, 44 (04): : 362 - 367
  • [22] HAMILTON CYCLES IN DOUBLE GENERALIZED PETERSEN GRAPHS
    Sakamoto, Yutaro
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2019, 39 (01) : 117 - 123
  • [23] Lower bounds for the number of Hamilton cycles in cubic bipartite hamiltonian graphs
    Chia, GL
    Ong, SH
    ALGEBRAS AND COMBINATORICS, 1999, : 113 - 118
  • [24] On the power domination number of the generalized Petersen graphs
    Guangjun Xu
    Liying Kang
    Journal of Combinatorial Optimization, 2011, 22 : 282 - 291
  • [25] The exact domination number of the generalized Petersen graphs
    Yan, Hong
    Kang, Liying
    Xu, Guangjun
    DISCRETE MATHEMATICS, 2009, 309 (08) : 2596 - 2607
  • [26] On the number of Hamiltonian cycles in Dirac graphs
    Sárközy, GN
    Selkow, SM
    Szemerédi, E
    DISCRETE MATHEMATICS, 2003, 265 (1-3) : 237 - 250
  • [27] On the power domination number of the generalized Petersen graphs
    Xu, Guangjun
    Kang, Liying
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2011, 22 (02) : 282 - 291
  • [28] Game Chromatic Number of Generalized Petersen Graphs and Jahangir Graphs
    Shaheen, Ramy
    Kanaya, Ziad
    Alshehada, Khaled
    JOURNAL OF APPLIED MATHEMATICS, 2020, 2020 (2020)
  • [29] Hamilton cycles in a family of graphs which includes the generalized Petersen graphs
    Dean, Matthew
    ARS COMBINATORIA, 2012, 103 : 205 - 224
  • [30] A lower bound on the number of Hamiltonian cycles through a prescribed edge in a crossed cube
    Chen, Jheng-Cheng
    Lai, Chia-Jui
    Tsai, Chang-Hsiung
    Lai, Pao-Lien
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (19) : 9885 - 9892