An Empirical Analysis of Generative Adversarial Network Training Times with Varying Batch

被引:0
|
作者
Ghosh, Bhaskar [1 ]
Dutta, Indira Kalyan [1 ]
Carlson, Albert
Totaro, Michael [1 ]
Bayoumi, Magdy [1 ]
机构
[1] Univ Louisiana Lafayette, Lafayette, LA 70504 USA
关键词
Generative Adversarial Networks; Training; Hyper-parameter; Neural Networks; Artificial Intelligence;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Increasing the performance of a Generative Adversarial Network (GAN) requires experimentation in choosing the suitable training hyper-parameters of learning rate and batch size. There is no consensus on learning rates or batch sizes in GANs, which makes it a "trial-and-error" process to get acceptable output. Researchers have differing views regarding the effect of batch sizes on run time. This paper investigates the impact of these training parameters of GANs with respect to actual elapsed training time. In our initial experiments, we study the effects of batch sizes, learning rates, loss function, and optimization algorithm on training using the MNIST dataset over 30,000 epochs. The simplicity of the MNIST dataset allows for a starting point in initial studies to understand if the parameter changes have any significant impact on the training times. The goal is to analyze and understand the results of varying loss functions, batch sizes, optimizer algorithms, and learning rates on GANs and address the key issue of batch size and learning rate selection.
引用
收藏
页码:643 / 648
页数:6
相关论文
共 50 条
  • [41] GANE: A Generative Adversarial Network Embedding
    Hong, Huiting
    Li, Xin
    Wang, Mingzhong
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2020, 31 (07) : 2325 - 2335
  • [42] Attentive evolutionary generative adversarial network
    Zhongze Wu
    Chunmei He
    Liwen Yang
    Fangjun Kuang
    Applied Intelligence, 2021, 51 : 1747 - 1761
  • [43] Graph Sparsification with Generative Adversarial Network
    Wu, Hang-Yang
    Chen, Yi-Ling
    20TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2020), 2020, : 1328 - 1333
  • [44] A generative adversarial network for image denoising
    Zhong, Yue
    Liu, Lizhuang
    Zhao, Dan
    Li, Hongyang
    MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (23-24) : 16517 - 16529
  • [45] Image Captioning with Generative Adversarial Network
    Amirian, Soheyla
    Rasheed, Khaled
    Taha, Thiab R.
    Arabnia, Hamid R.
    2019 6TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND COMPUTATIONAL INTELLIGENCE (CSCI 2019), 2019, : 272 - 275
  • [46] AGAN: ATTRIBUTE GENERATIVE ADVERSARIAL NETWORK
    Zhang, M.
    Xu, P.
    NEURAL NETWORK WORLD, 2021, 31 (02) : 159 - 172
  • [47] Speech Generation by Generative Adversarial Network
    Chen, Yijia
    2021 2ND INTERNATIONAL CONFERENCE ON BIG DATA & ARTIFICIAL INTELLIGENCE & SOFTWARE ENGINEERING (ICBASE 2021), 2021, : 435 - 438
  • [48] Face Reconstruction with Generative Adversarial Network
    Putra, Dino Hariatma
    Basaruddin, T.
    PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND SOFT COMPUTING (ICMLSC 2019), 2019, : 181 - 185
  • [49] A Capsule Conditional Generative Adversarial Network
    Chang, Jieh-Ren
    Chen, You-Shyang
    Bao Yipeng
    Hsu, Tzu-Lin
    2020 25TH INTERNATIONAL CONFERENCE ON TECHNOLOGIES AND APPLICATIONS OF ARTIFICIAL INTELLIGENCE (TAAI 2020), 2020, : 175 - 180
  • [50] A Generative Adversarial Network for Video Compression
    Du, Pengli
    Liu, Ying
    Ling, Nam
    Liu, Lingzhi
    Ren, Yongxiong
    Hsu, Ming Kai
    BIG DATA IV: LEARNING, ANALYTICS, AND APPLICATIONS, 2022, 12097