An Empirical Analysis of Generative Adversarial Network Training Times with Varying Batch

被引:0
|
作者
Ghosh, Bhaskar [1 ]
Dutta, Indira Kalyan [1 ]
Carlson, Albert
Totaro, Michael [1 ]
Bayoumi, Magdy [1 ]
机构
[1] Univ Louisiana Lafayette, Lafayette, LA 70504 USA
关键词
Generative Adversarial Networks; Training; Hyper-parameter; Neural Networks; Artificial Intelligence;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Increasing the performance of a Generative Adversarial Network (GAN) requires experimentation in choosing the suitable training hyper-parameters of learning rate and batch size. There is no consensus on learning rates or batch sizes in GANs, which makes it a "trial-and-error" process to get acceptable output. Researchers have differing views regarding the effect of batch sizes on run time. This paper investigates the impact of these training parameters of GANs with respect to actual elapsed training time. In our initial experiments, we study the effects of batch sizes, learning rates, loss function, and optimization algorithm on training using the MNIST dataset over 30,000 epochs. The simplicity of the MNIST dataset allows for a starting point in initial studies to understand if the parameter changes have any significant impact on the training times. The goal is to analyze and understand the results of varying loss functions, batch sizes, optimizer algorithms, and learning rates on GANs and address the key issue of batch size and learning rate selection.
引用
收藏
页码:643 / 648
页数:6
相关论文
共 50 条
  • [21] Robust generative adversarial network
    Zhang, Shufei
    Qian, Zhuang
    Huang, Kaizhu
    Zhang, Rui
    Xiao, Jimin
    He, Yuan
    Lu, Canyi
    MACHINE LEARNING, 2023, 112 (12) : 5135 - 5161
  • [22] Controllable Generative Adversarial Network
    Lee, Minhyeok
    Seok, Junhee
    IEEE ACCESS, 2019, 7 : 28158 - 28169
  • [23] TRAINING GENERATIVE ADVERSARIAL NETWORKS WITH WEIGHTS
    Pantazis, Yannis
    Paul, Dipjyoti
    Fasoulakis, Michail
    Stylianou, Yannis
    2019 27TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2019,
  • [24] On Stabilizing Generative Adversarial Training with Noise
    Jenni, Simon
    Favaro, Paolo
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 12137 - 12145
  • [25] Generative adversarial network for image deblurring using generative adversarial constraint loss
    Ji, Y.
    Dai, Y.
    Zhao, K.
    Li, S.
    DEVELOPMENTS OF ARTIFICIAL INTELLIGENCE TECHNOLOGIES IN COMPUTATION AND ROBOTICS, 2020, 12 : 1180 - 1187
  • [26] Collaborative-GAN: An Approach for Stabilizing the Training Process of Generative Adversarial Network
    Megahed, Mohammed
    Mohammed, Ammar
    IEEE ACCESS, 2024, 12 : 138716 - 138735
  • [27] ARTIFICIAL BANDWIDTH EXTENSION USING A CONDITIONAL GENERATIVE ADVERSARIAL NETWORK WITH DISCRIMINATIVE TRAINING
    Sautter, Jonas
    Faubel, Friedrich
    Buck, Markus
    Schmidt, Gerhard
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 7005 - 7009
  • [28] ASYMMETRIC TRAINING OF GENERATIVE ADVERSARIAL NETWORK FOR HIGH FIDELITY SAR IMAGE GENERATION
    Huang, Ying
    Mei, Wenhao
    Liu, Su
    Li, Tangsheng
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 1576 - 1579
  • [29] Noise Adaptation Generative Adversarial Network for Medical Image Analysis
    Zhang, Tianyang
    Cheng, Jun
    Fu, Huazhu
    Gu, Zaiwang
    Xiao, Yuting
    Zhou, Kang
    Gao, Shenghua
    Zheng, Rui
    Liu, Jiang
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2020, 39 (04) : 1149 - 1159
  • [30] English text sentiment analysis based on generative adversarial network
    Xuanyan Gong
    Evolutionary Intelligence, 2023, 16 : 1599 - 1607