On spectral methods for solving variable-order fractional integro-differential equations

被引:26
|
作者
Doha, E. H. [1 ]
Abdelkawy, M. A. [2 ,3 ]
Amin, A. Z. M. [4 ]
Lopes, Antonio M. [5 ]
机构
[1] Cairo Univ, Dept Math, Fac Sci, Giza, Egypt
[2] Al Imam Mohammad Ibn Saud Islamic Univ IMSIU, Coll Sci, Dept Math & Stat, Riyadh, Saudi Arabia
[3] Beni Suef Univ, Dept Math, Fac Sci, Bani Suwayf, Egypt
[4] Canadian Int Coll, Inst Engn, Dept Basic Sci, Giza, Egypt
[5] Univ Porto, Fac Engn, UISPA LAETA INEGI, Porto, Portugal
来源
COMPUTATIONAL & APPLIED MATHEMATICS | 2018年 / 37卷 / 03期
关键词
Fractional calculus; Variable-order fractional operator; Spectral collocation method; Shifted Jacobi-Gauss-quadrature; GAUSS COLLOCATION METHOD; BOUNDARY-VALUE-PROBLEMS; NUMERICAL-SOLUTION; DIFFERENTIAL-EQUATIONS; EXISTENCE;
D O I
10.1007/s40314-017-0551-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper applies the shifted Jacobi-Gauss collocation (SJ-G-C) method for solving variable-order fractional integro-differential equations (VO-FIDE) with initial conditions. The Riemann-Liouville fractional derivative, , and integral, , of variable order are combined, and the SJ-G-C applied to produce a system of algebraic equations. Numerical experiments demonstrate the applicability and reliability of the algorithm when compared with current methods.
引用
收藏
页码:3937 / 3950
页数:14
相关论文
共 50 条
  • [31] A pseudo-spectral scheme for variable order fractional stochastic Volterra integro-differential equations
    Algahtani, Obaid
    Abdelkawy, M. A.
    Lopes, Antonio M.
    AIMS MATHEMATICS, 2022, 7 (08): : 15453 - 15470
  • [32] Effective numerical technique for solving variable order integro-differential equations
    Taha M. El-Gindy
    Hoda F. Ahmed
    Marina B. Melad
    Journal of Applied Mathematics and Computing, 2022, 68 : 2823 - 2855
  • [33] Effective numerical technique for solving variable order integro-differential equations
    El-Gindy, Taha M.
    Ahmed, Hoda F.
    Melad, Marina B.
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2022, 68 (04) : 2823 - 2855
  • [34] Approximate methods for solving one-dimensional partial integro-differential equations of fractional order
    Mohammed, Osama H.
    Mohsin, Ahmed K.
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2021, (46): : 205 - 220
  • [35] Accurate Spectral Algorithms for Solving Variable-order Fractional Percolation Equations
    Abdelkawy, M. A.
    APPLICATIONS AND APPLIED MATHEMATICS-AN INTERNATIONAL JOURNAL, 2020, 15 (02): : 1004 - 1024
  • [36] Spectral solution of fractional fourth order partial integro-differential equations
    Bazgir, Hamed
    Ghazanfari, Bahman
    COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS, 2019, 7 (02): : 289 - 301
  • [37] Numerical Solution of Variable-Order Time Fractional Weakly Singular Partial Integro-Differential Equations with Error Estimation
    Dehestani, Haniye
    Ordokhani, Yadollah
    Razzaghi, Mohsen
    MATHEMATICAL MODELLING AND ANALYSIS, 2020, 25 (04) : 680 - 701
  • [38] A spectral collocation method for solving Caputo-Liouville fractional order Fredholm integro-differential equations
    Saad, Khaled M.
    Khirallah, M. Q.
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2024, 17 (01): : 477 - 503
  • [39] Fractional-order Chelyshkov wavelet method for solving variable-order fractional differential equations and an application in variable-order fractional relaxation system
    Hoa T. B. Ngo
    Mohsen Razzaghi
    Thieu N. Vo
    Numerical Algorithms, 2023, 92 : 1571 - 1588
  • [40] Fractional-order Chelyshkov wavelet method for solving variable-order fractional differential equations and an application in variable-order fractional relaxation system
    Ngo, Hoa T. B.
    Razzaghi, Mohsen
    Vo, Thieu N.
    NUMERICAL ALGORITHMS, 2023, 92 (03) : 1571 - 1588