A pseudo-spectral scheme for variable order fractional stochastic Volterra integro-differential equations

被引:1
|
作者
Algahtani, Obaid [1 ]
Abdelkawy, M. A. [2 ,3 ]
Lopes, Antonio M. [4 ]
机构
[1] King Saud Univ, Coll Sci, Dept Math, Riyadh, Saudi Arabia
[2] Imam Mohammad Ibn Saud Islamic Univ, Coll Sci, Dept Math & Stat, Riyadh, Saudi Arabia
[3] Beni Suef Univ, Fac Sci, Dept Math, Bani Suwayf, Egypt
[4] Univ Porto, Fac Engn, LAETA INEGI, Porto, Portugal
来源
AIMS MATHEMATICS | 2022年 / 7卷 / 08期
关键词
fractional Volterra integro-differential equation; Caputo fractional derivative; spectral collocation method; LOBATTO COLLOCATION METHOD; FINITE-ELEMENT METHODS; NUMERICAL-SOLUTION; DIFFERENTIAL-EQUATIONS; INTEGRAL-EQUATIONS; APPROXIMATION; CONSTRUCTION; COEFFICIENTS;
D O I
10.3934/math.2022846
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A spectral collocation method is proposed to solve variable order fractional stochastic Volterra integro-differential equations. The new technique relies on shifted fractional order Legendre orthogonal functions outputted by Legendre polynomials. The original equations are approximated using the shifted fractional order Legendre-Gauss-Radau collocation technique. The function describing the Brownian motion is discretized by means of Lagrange interpolation. The integral components are interpolated using Legendre-Gauss-Lobatto quadrature. The approach reveals superiority over other classical techniques, especially when treating problems with non-smooth solutions.
引用
收藏
页码:15453 / 15470
页数:18
相关论文
共 50 条