A pseudo-spectral scheme for variable order fractional stochastic Volterra integro-differential equations

被引:1
|
作者
Algahtani, Obaid [1 ]
Abdelkawy, M. A. [2 ,3 ]
Lopes, Antonio M. [4 ]
机构
[1] King Saud Univ, Coll Sci, Dept Math, Riyadh, Saudi Arabia
[2] Imam Mohammad Ibn Saud Islamic Univ, Coll Sci, Dept Math & Stat, Riyadh, Saudi Arabia
[3] Beni Suef Univ, Fac Sci, Dept Math, Bani Suwayf, Egypt
[4] Univ Porto, Fac Engn, LAETA INEGI, Porto, Portugal
来源
AIMS MATHEMATICS | 2022年 / 7卷 / 08期
关键词
fractional Volterra integro-differential equation; Caputo fractional derivative; spectral collocation method; LOBATTO COLLOCATION METHOD; FINITE-ELEMENT METHODS; NUMERICAL-SOLUTION; DIFFERENTIAL-EQUATIONS; INTEGRAL-EQUATIONS; APPROXIMATION; CONSTRUCTION; COEFFICIENTS;
D O I
10.3934/math.2022846
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A spectral collocation method is proposed to solve variable order fractional stochastic Volterra integro-differential equations. The new technique relies on shifted fractional order Legendre orthogonal functions outputted by Legendre polynomials. The original equations are approximated using the shifted fractional order Legendre-Gauss-Radau collocation technique. The function describing the Brownian motion is discretized by means of Lagrange interpolation. The integral components are interpolated using Legendre-Gauss-Lobatto quadrature. The approach reveals superiority over other classical techniques, especially when treating problems with non-smooth solutions.
引用
收藏
页码:15453 / 15470
页数:18
相关论文
共 50 条
  • [41] Numerical solution of two-dimensional fractional order Volterra integro-differential equations
    Ahsan, Sumbal
    Nawaz, Rashid
    Akbar, Muhammad
    Nisar, Kottakkaran Sooppy
    Abualnaja, Kholod M.
    Mahmoud, Emad E.
    Abdel-Aty, Abdel-Haleem
    AIP ADVANCES, 2021, 11 (03)
  • [42] Convergence analysis of homotopy perturbation method for Volterra integro-differential equations of fractional order
    Sayevand, K.
    Fardi, M.
    Moradi, E.
    Boroujeni, F. Hemati
    ALEXANDRIA ENGINEERING JOURNAL, 2013, 52 (04) : 807 - 812
  • [43] Bernoulli Polynomials Collocation for Weakly Singular Volterra Integro-Differential Equations of Fractional Order
    Azodi, Haman Deilami
    Yaghouti, Mohammad Reza
    FILOMAT, 2018, 32 (10) : 3623 - 3635
  • [44] A New Operational Method for Solving Nonlinear Volterra Integro-differential Equations with Fractional Order
    Moghadam, M. Mohseni
    Saeedi, H.
    Mollahasani, N.
    JOURNAL OF INFORMATICS AND MATHEMATICAL SCIENCES, 2010, 2 (2-3): : 95 - 107
  • [45] Numerical Analysis of the Fractional-Order Nonlinear System of Volterra Integro-Differential Equations
    Sunthrayuth, Pongsakorn
    Ullah, Roman
    Khan, Adnan
    Shah, Rasool
    Kafle, Jeevan
    Mahariq, Ibrahim
    Jarad, Fahd
    JOURNAL OF FUNCTION SPACES, 2021, 2021
  • [46] A method for fractional Volterra integro-differential equations by Laguerre polynomials
    Dilek Varol Bayram
    Ayşegül Daşcıoğlu
    Advances in Difference Equations, 2018
  • [47] Fractional Linear Volterra Integro-Differential Equations in Banach Spaces
    Ilolov M.I.
    Journal of Mathematical Sciences, 2022, 268 (1) : 56 - 62
  • [48] Analytic solutions of fractional Integro-Differential Equations of Volterra Type
    Turmetov, B.
    Abdullaev, J.
    1ST INTERNATIONAL CONFERENCE ON APPLIED & INDUSTRIAL MATHEMATICS AND STATISTICS 2017 (ICOAIMS 2017), 2017, 890
  • [49] A method for fractional Volterra integro-differential equations by Laguerre polynomials
    Bayram, Dilek Varol
    Dascioglu, Aysegul
    ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [50] Pseudo-operational matrix method for the solution of variable-order fractional partial integro-differential equations
    Dehestani, Haniye
    Ordokhani, Yadollah
    Razzaghi, Mohsen
    ENGINEERING WITH COMPUTERS, 2021, 37 (03) : 1791 - 1806