Opening up and control of spectral gaps of the Laplacian in periodic domains

被引:8
|
作者
Khrabustovskyi, Andrii [1 ]
机构
[1] Karlsruhe Inst Technol, Dept Math, Res Training Grp Anal Simulat & Design Nanotechno, D-76021 Karlsruhe, Germany
关键词
WAVE-GUIDE; BAND-GAP; ACOUSTIC MEDIA; OPERATORS; HOMOGENIZATION; DIRICHLET;
D O I
10.1063/1.4902935
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The main result of this work is as follows: for arbitrary pairwise disjoint, finite intervals (alpha(j), alpha(j)) subset of [0,infinity), j = 1,..., m, and for arbitrary n >= 2, we construct a family of periodic non-compact domains {Omega(epsilon) subset of R-n} epsilon>0 such that the spectrum of the Neumann Laplacian in Omega(epsilon) has at least m gaps when e is small enough, moreover the first m gaps tend to the intervals (alpha(j), beta(j)) as epsilon -> 0. The constructed domain Omega(epsilon) is obtained by removing from R-n a system of periodically distributed "trap-like" surfaces. The parameter epsilon characterizes the period of the domain Omega(epsilon), also it is involved in a geometry of the removed surfaces. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] ON SPECTRAL GAPS OF A LAPLACIAN IN A STRIP WITH A BOUNDED PERIODIC PERTURBATION
    Borisov, D., I
    UFA MATHEMATICAL JOURNAL, 2018, 10 (02): : 14 - 30
  • [2] Spectral gaps of the Laplacian on differential forms
    Leal, Helton
    Lu, Zhiqin
    DIFFERENTIAL GEOMETRY AND GLOBAL ANALYSIS: IN HONOR OF TADASHI NAGANO, 2022, 777 : 127 - 135
  • [3] Periodic manifolds, spectral gaps, and eigenvalues in gaps
    Post, O
    PARTIAL DIFFERENTIAL EQUATIONS AND SPECTRAL THEORY, 2001, 126 : 251 - 260
  • [4] Periodic manifolds with spectral gaps
    Post, O
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 187 (01) : 23 - 45
  • [5] SPECTRAL ANALYSIS OF LAPLACIAN IN DOMAINS WITH CYLINDERS
    LYFORD, WC
    MATHEMATISCHE ANNALEN, 1975, 218 (03) : 229 - 251
  • [6] Gaps in the Spectrum of the Laplacian in a Strip with Periodic Delta Interaction
    D. I. Borisov
    Proceedings of the Steklov Institute of Mathematics, 2019, 305 : S16 - S23
  • [7] Gaps in the spectrum of the Laplacian in a band with periodic delta interaction
    Borisov, Denis Ivanovich
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2018, 24 (02): : 46 - 53
  • [8] Gaps in the Spectrum of the Laplacian in a Strip with Periodic Delta Interaction
    Borisov, D. I.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2019, 305 (Suppl 1) : S16 - S23
  • [9] Spectral gaps for periodic piezoelectric waveguides
    Nazarov, Sergei A.
    Taskinen, Jari
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (06): : 3017 - 3047
  • [10] Spectral gaps for periodic piezoelectric waveguides
    Sergei A. Nazarov
    Jari Taskinen
    Zeitschrift für angewandte Mathematik und Physik, 2015, 66 : 3017 - 3047