Opening up and control of spectral gaps of the Laplacian in periodic domains

被引:8
|
作者
Khrabustovskyi, Andrii [1 ]
机构
[1] Karlsruhe Inst Technol, Dept Math, Res Training Grp Anal Simulat & Design Nanotechno, D-76021 Karlsruhe, Germany
关键词
WAVE-GUIDE; BAND-GAP; ACOUSTIC MEDIA; OPERATORS; HOMOGENIZATION; DIRICHLET;
D O I
10.1063/1.4902935
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The main result of this work is as follows: for arbitrary pairwise disjoint, finite intervals (alpha(j), alpha(j)) subset of [0,infinity), j = 1,..., m, and for arbitrary n >= 2, we construct a family of periodic non-compact domains {Omega(epsilon) subset of R-n} epsilon>0 such that the spectrum of the Neumann Laplacian in Omega(epsilon) has at least m gaps when e is small enough, moreover the first m gaps tend to the intervals (alpha(j), beta(j)) as epsilon -> 0. The constructed domain Omega(epsilon) is obtained by removing from R-n a system of periodically distributed "trap-like" surfaces. The parameter epsilon characterizes the period of the domain Omega(epsilon), also it is involved in a geometry of the removed surfaces. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:23
相关论文
共 50 条
  • [21] Spectral Anomalies of the Robin Laplacian in Non-Lipschitz Domains
    Nazarov, Sergey A.
    Taskinen, Jari
    JOURNAL OF MATHEMATICAL SCIENCES-THE UNIVERSITY OF TOKYO, 2013, 20 (01): : 27 - 90
  • [22] Spectral stability estimates for the Dirichlet and Neumann Laplacian in rough domains
    Lemenant, Antoine
    Milakis, Emmanouil
    Spinolo, Laura V.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2013, 264 (09) : 2097 - 2135
  • [23] Quantitative spectral stability for the Neumann Laplacian in domains with small holes
    Felli, Veronica
    Liverani, Lorenzo
    Ognibene, Roberto
    JOURNAL OF FUNCTIONAL ANALYSIS, 2025, 288 (06)
  • [24] Spectral optimization for Robin Laplacian on domains admitting parallel coordinates
    Exner, Pavel
    Lotoreichik, Vladimir
    MATHEMATISCHE NACHRICHTEN, 2022, 295 (06) : 1163 - 1173
  • [25] Spectral Stability of the Dirichlet–Laplacian in Two-Connected Domains
    Pchelintsev V.
    Ukhlov A.
    Journal of Mathematical Sciences, 2024, 281 (5) : 805 - 817
  • [26] Spectral gaps of Schrodinger operators with periodic singular potentials
    Djakov, Plamen
    Mityagin, Boris
    DYNAMICS OF PARTIAL DIFFERENTIAL EQUATIONS, 2009, 6 (02) : 95 - 165
  • [27] Opening gaps in the spectrum of the water-wave problem in a periodic channel
    Nazarov, S. A.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2010, 50 (06) : 1038 - 1054
  • [28] Opening gaps in the spectrum of the water-wave problem in a periodic channel
    S. A. Nazarov
    Computational Mathematics and Mathematical Physics, 2010, 50 : 1038 - 1054
  • [29] RATIONAL SPECTRAL METHODS FOR PDEs INVOLVING FRACTIONAL LAPLACIAN IN UNBOUNDED DOMAINS
    Tang, Tao
    Wang, Li-Lian
    Yuan, Huifang
    Zhou, Tao
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2020, 42 (02): : A585 - A611
  • [30] Distributed Control of the Laplacian Spectral Moments of a Network
    Preciado, Victor M.
    Zavlanos, Michael M.
    Jadbabaie, Ali
    Pappas, George J.
    2010 AMERICAN CONTROL CONFERENCE, 2010, : 4462 - 4467