Spectral gaps for periodic piezoelectric waveguides

被引:6
|
作者
Nazarov, Sergei A. [1 ,2 ,3 ]
Taskinen, Jari [4 ]
机构
[1] St Petersburg State Univ, Math & Mech Fac, Peterhof St Petersburg 198504, Russia
[2] St Petersburg State Polytech Univ, St Petersburg 195251, Russia
[3] RAS, Inst Problems Mech Engn, St Petersburg 199178, Russia
[4] Univ Helsinki, Dept Math & Stat, Helsinki 00014, Finland
来源
基金
芬兰科学院;
关键词
Piezoelectricity system; Periodic waveguide; Essential spectrum; Spectral gap; BOUNDARY; SYSTEM; EDGES;
D O I
10.1007/s00033-015-0561-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct a family of periodic piezoelectric waveguides Pi(epsilon), depending on a small geometrical parameter, with the following property: as epsilon -> +0, the number of gaps in the essential spectrum of the piezoelectricity problem on Pi(epsilon) grows unboundedly.
引用
收藏
页码:3017 / 3047
页数:31
相关论文
共 50 条
  • [1] Spectral gaps for periodic piezoelectric waveguides
    Sergei A. Nazarov
    Jari Taskinen
    Zeitschrift für angewandte Mathematik und Physik, 2015, 66 : 3017 - 3047
  • [2] Asymptotics of Eigenvalues in Spectral Gaps of Periodic Waveguides with Small Singular Perturbations
    Nazarov S.A.
    Journal of Mathematical Sciences, 2019, 243 (5) : 746 - 773
  • [3] Periodic manifolds, spectral gaps, and eigenvalues in gaps
    Post, O
    PARTIAL DIFFERENTIAL EQUATIONS AND SPECTRAL THEORY, 2001, 126 : 251 - 260
  • [4] Periodic manifolds with spectral gaps
    Post, O
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 187 (01) : 23 - 45
  • [5] Gaps in the essential spectrum of periodic elastic waveguides
    Cardone, Giuseppe
    Minutolo, Vincenzo
    Nazarov, Sergey A.
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2009, 89 (09): : 729 - 741
  • [6] On the Eigenvalues of Spectral Gaps of Elliptic PDEs on Waveguides
    Aljawi, Salma
    Marletta, Marco
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2023, 95 (01)
  • [7] On the Eigenvalues of Spectral Gaps of Elliptic PDEs on Waveguides
    Salma Aljawi
    Marco Marletta
    Integral Equations and Operator Theory, 2023, 95
  • [8] WAVE PROPAGATION IN PERIODIC PIEZOELECTRIC ELASTIC WAVEGUIDES
    Piliposyan, D. G.
    Ghazaryan, K. B.
    Piliposian, G. T.
    Avetisyan, A. S.
    PROCEEDINGS OF THE ASME CONFERENCE ON SMART MATERIALS, ADAPTIVE STRUCTURES AND INTELLIGENT SYSTEMS, VOL 1, 2012, : 1 - 9
  • [9] Spectral Gap of Segments of Periodic Waveguides
    Sylwia Kondej
    Ivan Veselić
    Letters in Mathematical Physics, 2007, 79 : 95 - 98
  • [10] Spectral gap of segments of periodic waveguides
    Kondej, Sylwia
    Veselic, Ivan
    LETTERS IN MATHEMATICAL PHYSICS, 2007, 79 (01) : 95 - 98