Spectral gaps for periodic piezoelectric waveguides

被引:6
|
作者
Nazarov, Sergei A. [1 ,2 ,3 ]
Taskinen, Jari [4 ]
机构
[1] St Petersburg State Univ, Math & Mech Fac, Peterhof St Petersburg 198504, Russia
[2] St Petersburg State Polytech Univ, St Petersburg 195251, Russia
[3] RAS, Inst Problems Mech Engn, St Petersburg 199178, Russia
[4] Univ Helsinki, Dept Math & Stat, Helsinki 00014, Finland
来源
基金
芬兰科学院;
关键词
Piezoelectricity system; Periodic waveguide; Essential spectrum; Spectral gap; BOUNDARY; SYSTEM; EDGES;
D O I
10.1007/s00033-015-0561-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct a family of periodic piezoelectric waveguides Pi(epsilon), depending on a small geometrical parameter, with the following property: as epsilon -> +0, the number of gaps in the essential spectrum of the piezoelectricity problem on Pi(epsilon) grows unboundedly.
引用
收藏
页码:3017 / 3047
页数:31
相关论文
共 50 条
  • [21] Symmetry breaking induces band gaps in periodic piezoelectric plates
    Huang, Y.
    Wang, H. M.
    Chen, W. Q.
    JOURNAL OF APPLIED PHYSICS, 2014, 115 (13)
  • [22] Absolute Continuity and Band Gaps of the Spectrum of the Dirichlet Laplacian in Periodic Waveguides
    Carlos R. Mamani
    Alessandra A. Verri
    Bulletin of the Brazilian Mathematical Society, New Series, 2018, 49 : 495 - 513
  • [23] Quantum waveguides with small periodic perturbations: gaps and edges of Brillouin zones
    Borisov, Denis
    Pankrashkin, Konstantin
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (23)
  • [24] Absolute Continuity and Band Gaps of the Spectrum of the Dirichlet Laplacian in Periodic Waveguides
    Mamani, Carlos R.
    Verri, Alessandra A.
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2018, 49 (03): : 495 - 513
  • [25] Spectral gaps of Schrodinger operators with periodic singular potentials
    Djakov, Plamen
    Mityagin, Boris
    DYNAMICS OF PARTIAL DIFFERENTIAL EQUATIONS, 2009, 6 (02) : 95 - 165
  • [26] ON SPECTRAL GAPS OF A LAPLACIAN IN A STRIP WITH A BOUNDED PERIODIC PERTURBATION
    Borisov, D., I
    UFA MATHEMATICAL JOURNAL, 2018, 10 (02): : 14 - 30
  • [27] Photonic modes of metallodielectric periodic waveguides in the midinfrared spectral range
    Carras, Mathieu
    De Rossi, Alfredo
    PHYSICAL REVIEW B, 2006, 74 (23):
  • [28] Periodic optical waveguides: Exact Floquet theory and spectral properties
    Besley, JA
    Akhmediev, NN
    Miller, PD
    STUDIES IN APPLIED MATHEMATICS, 1998, 101 (04) : 343 - 355
  • [29] Electrical Bragg band gaps in piezoelectric plates with a periodic array of electrodes
    Vasseur, Clement
    Croenne, Charles
    Vasseur, Jerome
    Dubus, Bertrand
    Hladky-Hennion, Anne-Christine
    Mai Pham Thi
    2016 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IUS), 2016,
  • [30] Wave band gaps in three-dimensional periodic piezoelectric structures
    Wang, Yi-Ze
    Li, Feng-Ming
    Kishimoto, Kikuo
    Wang, Yue-Sheng
    Huang, Wen-Hu
    MECHANICS RESEARCH COMMUNICATIONS, 2009, 36 (04) : 461 - 468