AN OPTIMAL STRONG EQUILIBRIUM SOLUTION FOR COOPERATIVE MULTI-LEADER-FOLLOWER STACKELBERG MARKOV CHAINS GAMES

被引:20
|
作者
Trejo, K. K. [1 ]
Clempner, J. B. [2 ]
Poznyak, A. S. [1 ]
机构
[1] Ctr Res & Adv Studies, Dept Automat Control, Ave IPN 2508, Mexico City 07360, DF, Mexico
[2] Inst Politecn Nacl, Ctr Invest Econ Adm & Sociales, Lauro Aguirre 120, Mexico City 11360, DF, Mexico
关键词
strong equilibrium; Stackelberg and Nash; L-p-norm; Markov chains; BILEVEL MODEL; OPTIMIZATION; SECURITY; DISCRETE;
D O I
10.14736/kyb-2016-2-0258
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a novel approach for computing the strong Stackelberg/Nash equilibrium for Markov chains games. For solving the cooperative n-leaders and m-followers Markov game we consider the minimization of the L-p-norm that reduces the distance to the utopian point in the Euclidian space. Then, we reduce the optimization problem to find a Pareto optimal solution. We employ a bi-level programming method implemented by the extraproximal optimization approach for computing the strong L-p-Stackelberg/Nash equilibrium. We validate the proposed method theoretically and by a numerical experiment related to marketing strategies for supermarkets.
引用
收藏
页码:258 / 279
页数:22
相关论文
共 42 条
  • [31] Existence and generic stability of cooperative equilibria for multi-leader-multi-follower games
    Zhe Yang
    Yan Ju
    Journal of Global Optimization, 2016, 65 : 563 - 573
  • [32] Stackelberg and Nash Equilibrium Computation in Non-Convex Leader-Follower Network Aggregative Games
    Li, Rongjiang
    Chen, Guanpu
    Gan, Die
    Gu, Haibo
    Lu, Jinhu
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2024, 71 (02) : 898 - 909
  • [33] Existence of equilibrium solution for leader-follower games with fuzzy goals and parameters
    Liu, Zhenli
    Wang, Guoling
    Yang, Guanghui
    FUZZY SETS AND SYSTEMS, 2023, 473
  • [34] Discrete time dynamic multi-leader-follower games with stage-depending leaders under feedback information
    Nie, Pu-yan
    NONLINEAR ANALYSIS-HYBRID SYSTEMS, 2007, 1 (04) : 548 - 559
  • [35] EXISTENCE AND LEVITIN-POLYAK WELL-POSEDNESS FOR A CLASS OF GENERALIZED MULTIOBJECTIVE MULTI-LEADER-FOLLOWER GAMES
    Zeng, Jing
    Zhang, Wen-Yan
    PACIFIC JOURNAL OF OPTIMIZATION, 2016, 12 (04): : 717 - 726
  • [36] Relay-Centric Two-Hop Networks with Asymmetric Wireless Energy Transfer: A Multi-Leader-Follower Stackelberg Game
    Leng, Shiyang
    Yener, Aylin
    2018 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2018,
  • [37] Multi-leader-follower group consensus of stochastic time-delay multi-agent systems subject to Markov switching topology
    Guo, Tong
    Han, Jing
    Zhou, Cancan
    Zhou, Jianping
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2022, 19 (08) : 7504 - 7520
  • [38] Computing the strong Lp - Nash equilibrium for Markov chains games: Convergence and uniqueness
    Trejo, Kristal K.
    Clempner, Julio B.
    Poznyak, Alexander S.
    APPLIED MATHEMATICAL MODELLING, 2017, 41 : 399 - 418
  • [39] Quasi-variational inequalities, generalized Nash equilibria, and multi-leader-follower games (vol 2, pg 21, 2005)
    Pang, Jong-Shi
    Fukushima, Masao
    COMPUTATIONAL MANAGEMENT SCIENCE, 2009, 6 (03) : 373 - 375
  • [40] A Multi-Leader One-Follower Stackelberg Game Approach for Cooperative Anti-Jamming: No Pains, No Gains
    Zhang, Yuli
    Xu, Yuhua
    Xu, Yitao
    Yang, Yang
    Luo, Yunpeng
    Wu, Qihui
    Liu, Xin
    IEEE COMMUNICATIONS LETTERS, 2018, 22 (08) : 1680 - 1683