The Krein-von Neumann extension revisited

被引:8
|
作者
Fucci, Guglielmo [1 ]
Gesztesy, Fritz [2 ]
Kirsten, Klaus [2 ,3 ]
Littlejohn, Lance L. [2 ]
Nichols, Roger [4 ]
Stanfill, Jonathan [2 ]
机构
[1] East Carolina Univ, Dept Math, Greenville, NC 27858 USA
[2] Baylor Univ, Dept Math, Waco, TX 76798 USA
[3] Amer Math Soc, Math Reviews, Ann Arbor, MI USA
[4] Univ Tennessee Chattanooga, Dept Math Dept 6956, Chattanooga, TN USA
关键词
Krein-von Neumann extension; singular Sturm-Liouville operators; Bessel and Jacobi-type differential operators; STURM-LIOUVILLE OPERATORS; SELF-ADJOINT EXTENSIONS; FRIEDRICHS EXTENSION; JACOBI-POLYNOMIALS; RESOLVENT FORMULA;
D O I
10.1080/00036811.2021.1938005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We revisit the Krein-von Neumann extension in the case where the underlying symmetric operator is strictly positive and apply this to derive the explicit form of the Krein-von Neumann extension for singular, general (i.e., three-coefficient) Sturm-Liouville operators on arbitrary intervals. In particular, the boundary conditions for the Krein-von Neumann extension of the strictly positive minimal Sturm-Liouville operator are explicitly expressed in terms of generalized boundary values adapted to the (possible) singularity structure of the coefficients near an interval endpoint.
引用
收藏
页码:1593 / 1616
页数:24
相关论文
共 50 条
  • [1] Some Remarks on the Krein-von Neumann Extension of Different Laplacians
    Mugnolo, Delio
    SEMIGROUPS OF OPERATORS - THEORY AND APPLICATIONS, 2015, 113 : 69 - 87
  • [2] The Krein-von Neumann Extension for Schrodinger Operators on Metric Graphs
    Muller, Jacob
    Rohleder, Jonathan
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2021, 15 (02)
  • [3] The Krein-von Neumann extension and its connection to an abstract buckling problem
    Ashbaugh, Mark S.
    Gesztesy, Fritz
    Mitrea, Marius
    Shterenberg, Roman
    Teschl, Gerald
    MATHEMATISCHE NACHRICHTEN, 2010, 283 (02) : 165 - 179
  • [4] KREIN-VON NEUMANN EXTENSION OF AN EVEN ORDER DIFFERENTIAL OPERATOR ON A FINITE INTERVAL
    Granovskyi, Yaroslav I.
    Oridoroga, Leonid L.
    OPUSCULA MATHEMATICA, 2018, 38 (05) : 681 - 698
  • [5] Operators on anti-dual pairs: Generalized Krein-von Neumann extension
    Tarcsay, Zsigmond
    Titkos, Tamas
    MATHEMATISCHE NACHRICHTEN, 2021, 294 (09) : 1821 - 1838
  • [6] THE KREIN-VON NEUMANN EXTENSION OF A REGULAR EVEN ORDER QUASI-DIFFERENTIAL OPERATOR
    Cho, Minsung
    Hoisington, Seth
    Nichols, Roger
    Udall, Brian
    OPUSCULA MATHEMATICA, 2021, 41 (06) : 805 - 841
  • [7] On generalized Friedrichs and Krein-von Neumann extensions and canonical systems
    Winkler, H
    MATHEMATISCHE NACHRICHTEN, 2002, 236 : 175 - 191
  • [8] A bound for the eigenvalue counting function for Krein-von Neumann and Friedrichs extensions
    Ashbaugh, Mark S.
    Gesztesy, Fritz
    Laptev, Ari
    Mitrea, Marius
    Sukhtaiev, Selim
    ADVANCES IN MATHEMATICS, 2017, 304 : 1108 - 1155
  • [9] Krein-von Neumann and Friedrichs extensions for second order operators on time scales
    Zemanek, Petr
    INTERNATIONAL JOURNAL OF DYNAMICAL SYSTEMS AND DIFFERENTIAL EQUATIONS, 2011, 3 (1-2) : 132 - 144
  • [10] The Krein–von Neumann Extension for Schrödinger Operators on Metric Graphs
    Jacob Muller
    Jonathan Rohleder
    Complex Analysis and Operator Theory, 2021, 15