KREIN-VON NEUMANN EXTENSION OF AN EVEN ORDER DIFFERENTIAL OPERATOR ON A FINITE INTERVAL

被引:2
|
作者
Granovskyi, Yaroslav I. [1 ]
Oridoroga, Leonid L. [2 ]
机构
[1] NAS Ukraine, Inst Appl Math & Mech, Kiev, Ukraine
[2] Donetsk Natl Univ, Donetsk, Ukraine
关键词
non-negative extension; Friedrichs' extension; Krein-von Neumann extension; boundary triple; Weyl function;
D O I
10.7494/OpMath.2018.38.5.681
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We describe the Krein-von Neumann extension of minimal operator associated with the expression A := (-1)(n) d(2n)/dx(2n) on a finite interval (a, b) in terms of boundary conditions. All non-negative extensions of the operator A as well as extensions with a finite number of negative squares are described.
引用
收藏
页码:681 / 698
页数:18
相关论文
共 50 条
  • [1] THE KREIN-VON NEUMANN EXTENSION OF A REGULAR EVEN ORDER QUASI-DIFFERENTIAL OPERATOR
    Cho, Minsung
    Hoisington, Seth
    Nichols, Roger
    Udall, Brian
    OPUSCULA MATHEMATICA, 2021, 41 (06) : 805 - 841
  • [2] The Krein-von Neumann extension revisited
    Fucci, Guglielmo
    Gesztesy, Fritz
    Kirsten, Klaus
    Littlejohn, Lance L.
    Nichols, Roger
    Stanfill, Jonathan
    APPLICABLE ANALYSIS, 2022, 101 (05) : 1593 - 1616
  • [3] Krein Extension of an Even-Order Differential Operator
    Ya. I. Granovskyi
    L. L. Oridoroga
    Differential Equations, 2018, 54 : 551 - 556
  • [4] Krein Extension of an Even-Order Differential Operator
    Granovskyi, Ya. I.
    Oridoroga, L. L.
    DIFFERENTIAL EQUATIONS, 2018, 54 (04) : 551 - 556
  • [5] Some Remarks on the Krein-von Neumann Extension of Different Laplacians
    Mugnolo, Delio
    SEMIGROUPS OF OPERATORS - THEORY AND APPLICATIONS, 2015, 113 : 69 - 87
  • [6] The Krein-von Neumann Extension for Schrodinger Operators on Metric Graphs
    Muller, Jacob
    Rohleder, Jonathan
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2021, 15 (02)
  • [7] The Krein-von Neumann extension and its connection to an abstract buckling problem
    Ashbaugh, Mark S.
    Gesztesy, Fritz
    Mitrea, Marius
    Shterenberg, Roman
    Teschl, Gerald
    MATHEMATISCHE NACHRICHTEN, 2010, 283 (02) : 165 - 179
  • [8] Operators on anti-dual pairs: Generalized Krein-von Neumann extension
    Tarcsay, Zsigmond
    Titkos, Tamas
    MATHEMATISCHE NACHRICHTEN, 2021, 294 (09) : 1821 - 1838
  • [9] Krein-von Neumann and Friedrichs extensions for second order operators on time scales
    Zemanek, Petr
    INTERNATIONAL JOURNAL OF DYNAMICAL SYSTEMS AND DIFFERENTIAL EQUATIONS, 2011, 3 (1-2) : 132 - 144
  • [10] On generalized Friedrichs and Krein-von Neumann extensions and canonical systems
    Winkler, H
    MATHEMATISCHE NACHRICHTEN, 2002, 236 : 175 - 191