Some Remarks on the Krein-von Neumann Extension of Different Laplacians

被引:2
|
作者
Mugnolo, Delio [1 ]
机构
[1] Fernuniv, Fak Math & Informat, Lehrgebiet Anal, D-58084 Hagen, Germany
关键词
BOUNDARY-CONDITIONS; FRIEDRICHS EXTENSIONS; HEAT-EQUATION; DIRICHLET; GRAPHS; FORMS;
D O I
10.1007/978-3-319-12145-1_5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We discuss the Krein-von Neumann extensions of three Laplacian-type operators-on discrete graphs, quantum graphs, and domains. In passing we present a class of one-dimensional elliptic operators such that for any n is an element of N infinitely many elements of the class have n-dimensional null space.
引用
收藏
页码:69 / 87
页数:19
相关论文
共 50 条
  • [1] The Krein-von Neumann extension revisited
    Fucci, Guglielmo
    Gesztesy, Fritz
    Kirsten, Klaus
    Littlejohn, Lance L.
    Nichols, Roger
    Stanfill, Jonathan
    APPLICABLE ANALYSIS, 2022, 101 (05) : 1593 - 1616
  • [2] The Krein-von Neumann Extension for Schrodinger Operators on Metric Graphs
    Muller, Jacob
    Rohleder, Jonathan
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2021, 15 (02)
  • [3] The Krein-von Neumann extension and its connection to an abstract buckling problem
    Ashbaugh, Mark S.
    Gesztesy, Fritz
    Mitrea, Marius
    Shterenberg, Roman
    Teschl, Gerald
    MATHEMATISCHE NACHRICHTEN, 2010, 283 (02) : 165 - 179
  • [4] KREIN-VON NEUMANN EXTENSION OF AN EVEN ORDER DIFFERENTIAL OPERATOR ON A FINITE INTERVAL
    Granovskyi, Yaroslav I.
    Oridoroga, Leonid L.
    OPUSCULA MATHEMATICA, 2018, 38 (05) : 681 - 698
  • [5] Operators on anti-dual pairs: Generalized Krein-von Neumann extension
    Tarcsay, Zsigmond
    Titkos, Tamas
    MATHEMATISCHE NACHRICHTEN, 2021, 294 (09) : 1821 - 1838
  • [6] THE KREIN-VON NEUMANN EXTENSION OF A REGULAR EVEN ORDER QUASI-DIFFERENTIAL OPERATOR
    Cho, Minsung
    Hoisington, Seth
    Nichols, Roger
    Udall, Brian
    OPUSCULA MATHEMATICA, 2021, 41 (06) : 805 - 841
  • [7] On generalized Friedrichs and Krein-von Neumann extensions and canonical systems
    Winkler, H
    MATHEMATISCHE NACHRICHTEN, 2002, 236 : 175 - 191
  • [8] A bound for the eigenvalue counting function for Krein-von Neumann and Friedrichs extensions
    Ashbaugh, Mark S.
    Gesztesy, Fritz
    Laptev, Ari
    Mitrea, Marius
    Sukhtaiev, Selim
    ADVANCES IN MATHEMATICS, 2017, 304 : 1108 - 1155
  • [9] Krein-von Neumann and Friedrichs extensions for second order operators on time scales
    Zemanek, Petr
    INTERNATIONAL JOURNAL OF DYNAMICAL SYSTEMS AND DIFFERENTIAL EQUATIONS, 2011, 3 (1-2) : 132 - 144
  • [10] SOME REMARKS ON KREIN EXTENSION THEORY
    BRASCHE, JF
    NEIDHARDT, H
    MATHEMATISCHE NACHRICHTEN, 1994, 165 : 159 - 181