Further Progress on the Total Roman {2}-Domination Number of Graphs

被引:0
|
作者
Abdollahzadeh Ahangar, Hossein [1 ]
Chellali, Mustapha [2 ]
Hajjari, Maryam [3 ]
Sheikholeslami, Seyed Mahmoud [3 ]
机构
[1] Babol Noshirvani Univ Technol, Dept Math, Babol 4714871167, Iran
[2] Univ Blida, Dept Math, LAMDA RO Lab, Blida, Algeria
[3] Azarbaijan Shahid Madani Univ, Dept Math, Tabriz, Iran
关键词
Domination number; Total domination number; Total Roman {2}-domination number; DOMINATION;
D O I
10.1007/s41980-021-00565-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a graph Gamma, let gamma(Gamma), gamma(t)(Gamma), and gamma(t R2)(Gamma) denote the domination number, the total domination number, and the total Roman {2}-domination number, respectively. It was shown in Abdollahzadeh Ahangar et al. (Discuss Math Graph Theory, in press) that for each nontrivial connected graph Gamma, gamma(t)(Gamma) <= gamma(t R2)(Gamma) <= 3 gamma(Gamma). The problem that arises naturally is to characterize the graphs attaining each bound. For the left inequality, we establish a necessary and sufficient condition for nontrivial connected graphs Gamma with gamma(t R2)(Gamma) =gamma t(Gamma), and we characterize those graphs that are {C-3, C-6}free or block. For the right inequality, we present a necessary condition for nontrivial connected graphs Gamma with gamma(t R2)(Gamma) = 3 gamma (Gamma), and we characterize those graphs that are diameter-2 or trees.
引用
收藏
页码:1111 / 1119
页数:9
相关论文
共 50 条
  • [21] Roman domination subdivision number of graphs
    M. Atapour
    S. M. Sheikholeslami
    Abdollah Khodkar
    Aequationes mathematicae, 2009, 78
  • [22] On the Global Roman Domination Number in Graphs
    H. Abdollahzadeh Ahangar
    Iranian Journal of Science and Technology, Transactions A: Science, 2016, 40 : 157 - 163
  • [23] Roman domination number of signed graphs
    Joseph, James
    Joseph, Mayamma
    COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2023, 8 (04) : 759 - 766
  • [24] Algorithmic aspects of total Roman {2}-domination in graphs
    Chakradhar, P.
    Reddy, P. Venkata Subba
    COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2022, 7 (02) : 183 - 192
  • [25] On the total domination number of graphs
    Lam, Peter Che Bor
    Wei, Bing
    UTILITAS MATHEMATICA, 2007, 72 : 223 - 240
  • [26] DOMINATION NUMBER OF TOTAL GRAPHS
    Shariatinia, Abbas
    Maimani, Hamid Reza
    Yassemi, Siamak
    MATHEMATICA SLOVACA, 2016, 66 (06) : 1527 - 1535
  • [27] Hop total Roman domination in graphs
    Abdollahzadeh Ahangar, H.
    Chellali, M.
    Sheikholeslami, S. M.
    Soroudi, M.
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2023, 20 (01) : 73 - 78
  • [28] Some notes on the Roman domination number and Italian domination number in graphs
    Hajibaba, Maryam
    Rad, Nader Jafari
    1ST INTERNATIONAL CONFERENCE ON APPLIED & INDUSTRIAL MATHEMATICS AND STATISTICS 2017 (ICOAIMS 2017), 2017, 890
  • [29] A note on the Italian domination number and double Roman domination number in graphs
    Hajibaba, Maryam
    Rad, Nader Jafari
    Journal of Combinatorial Mathematics and Combinatorial Computing, 2019, 109 : 169 - 183
  • [30] On the total Roman domination stability in graphs
    Asemian, Ghazale
    Jafari Rad, Nader
    Tehranian, Abolfazl
    Rasouli, Hamid
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2021, 18 (03) : 166 - 172