Roman domination subdivision number of graphs

被引:0
|
作者
M. Atapour
S. M. Sheikholeslami
Abdollah Khodkar
机构
[1] Azarbaijan University of Tarbiat Moallem,Department of Mathematics
[2] University of West Georgia,Department of Mathematics
来源
Aequationes mathematicae | 2009年 / 78卷
关键词
05C69; Domination in graphs; Roman domination number; Roman domination subdivision number;
D O I
暂无
中图分类号
学科分类号
摘要
A Roman dominating function on a graph G = (V, E) is a function \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f : V \rightarrow \{0, 1, 2\}$$\end{document} satisfying the condition that every vertex v for which f(v) = 0 is adjacent to at least one vertex u for which f(u) = 2. The weight of a Roman dominating function is the value \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w(f) = \sum_{v\in V} f(v)$$\end{document}. The Roman domination number of a graph G, denoted by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{\gamma R}(G)$$\end{document}, equals the minimum weight of a Roman dominating function on G. The Roman domination subdivision number\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$sd_{\gamma R}(G)$$\end{document} is the minimum number of edges that must be subdivided (each edge in G can be subdivided at most once) in order to increase the Roman domination number. In this paper, first we establish upper bounds on the Roman domination subdivision number for arbitrary graphs in terms of vertex degree. Then we present several different conditions on G which are sufficient to imply that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1 \leq sd_{\gamma R}(G) \leq 3$$\end{document}. Finally, we show that the Roman domination subdivision number of a graph can be arbitrarily large.
引用
收藏
相关论文
共 50 条
  • [1] Roman domination subdivision number of graphs
    Atapour, M.
    Sheikholeslami, S. M.
    Khodkar, Abdollah
    AEQUATIONES MATHEMATICAE, 2009, 78 (03) : 237 - 245
  • [2] On [k]-Roman domination subdivision number of graphs
    Haghparast, K.
    Amjadi, J.
    Chellali, M.
    Sheikholeslami, S. M.
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2022, 19 (03) : 261 - 267
  • [3] Triple Roman domination subdivision number in graphs
    Amjadi, J.
    Sadeghi, H.
    COMPUTER SCIENCE JOURNAL OF MOLDOVA, 2022, 30 (01) : 109 - 130
  • [4] Double Roman domination subdivision number in graphs
    Amjadi, J.
    Sadeghi, H.
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2022, 15 (07)
  • [5] Total Roman domination subdivision number in graphs
    Amjadi, Jafar
    COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2020, 5 (02) : 157 - 168
  • [6] On the Roman domination subdivision number of a graph
    J. Amjadi
    R. Khoeilar
    M. Chellali
    Z. Shao
    Journal of Combinatorial Optimization, 2020, 40 : 501 - 511
  • [7] On the Roman domination subdivision number of a graph
    Amjadi, J.
    Khoeilar, R.
    Chellali, M.
    Shao, Z.
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2020, 40 (02) : 501 - 511
  • [8] On the Total Domination Subdivision Number in Graphs
    Favaron, O.
    Karami, H.
    Khoeilar, R.
    Sheikholeslami, S. M.
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2014, 37 (01) : 173 - 180
  • [9] ROMAN GAME DOMINATION SUBDIVISION NUMBER OF A GRAPH
    Amjadi, J.
    Karami, H.
    Sheikholeslami, S. M.
    Volkmann, L.
    TRANSACTIONS ON COMBINATORICS, 2013, 2 (04) : 1 - 12
  • [10] INVERSE MAJORITY DOMINATION NUMBER ON SUBDIVISION GRAPHS
    Manora, J. Joseline
    Vignesh, S.
    ADVANCES AND APPLICATIONS IN MATHEMATICAL SCIENCES, 2021, 21 (02): : 805 - 817