Roman domination subdivision number of graphs

被引:0
|
作者
M. Atapour
S. M. Sheikholeslami
Abdollah Khodkar
机构
[1] Azarbaijan University of Tarbiat Moallem,Department of Mathematics
[2] University of West Georgia,Department of Mathematics
来源
Aequationes mathematicae | 2009年 / 78卷
关键词
05C69; Domination in graphs; Roman domination number; Roman domination subdivision number;
D O I
暂无
中图分类号
学科分类号
摘要
A Roman dominating function on a graph G = (V, E) is a function \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f : V \rightarrow \{0, 1, 2\}$$\end{document} satisfying the condition that every vertex v for which f(v) = 0 is adjacent to at least one vertex u for which f(u) = 2. The weight of a Roman dominating function is the value \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w(f) = \sum_{v\in V} f(v)$$\end{document}. The Roman domination number of a graph G, denoted by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{\gamma R}(G)$$\end{document}, equals the minimum weight of a Roman dominating function on G. The Roman domination subdivision number\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$sd_{\gamma R}(G)$$\end{document} is the minimum number of edges that must be subdivided (each edge in G can be subdivided at most once) in order to increase the Roman domination number. In this paper, first we establish upper bounds on the Roman domination subdivision number for arbitrary graphs in terms of vertex degree. Then we present several different conditions on G which are sufficient to imply that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1 \leq sd_{\gamma R}(G) \leq 3$$\end{document}. Finally, we show that the Roman domination subdivision number of a graph can be arbitrarily large.
引用
收藏
相关论文
共 50 条
  • [32] A Note on the Double Roman Domination Number of Graphs
    Chen, Xue-gang
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2020, 70 (01) : 205 - 212
  • [33] EXTREMAL GRAPHS FOR A BOUND ON THE ROMAN DOMINATION NUMBER
    Bouchou, Ahmed
    Blidia, Mostafa
    Chellali, Mustapha
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2020, 40 (03) : 771 - 785
  • [34] Critical graphs with Roman domination number four
    Martinez-Perez, A.
    Oliveros, D.
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2020, 17 (03) : 804 - 809
  • [35] On the Roman Domination Number of Generalized Sierpinski Graphs
    Ramezani, F.
    Rodriguez-Bazan, E. D.
    Rodriguez-Velazquez, J. A.
    FILOMAT, 2017, 31 (20) : 6515 - 6528
  • [36] Results on Total Restrained Domination number and subdivision number for certain graphs
    Jeyanthi, P.
    Hemalatha, G.
    Davvaz, B.
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2015, 18 (04): : 363 - 369
  • [37] A Note on the Double Roman Domination Number of Graphs
    Xue-gang Chen
    Czechoslovak Mathematical Journal, 2020, 70 : 205 - 212
  • [38] Note on the perfect Roman domination number of graphs
    Yue, Jun
    Song, Jiamei
    APPLIED MATHEMATICS AND COMPUTATION, 2020, 364 (364)
  • [39] Graphs with Large Hop Roman Domination Number
    Shabani, E.
    Rad, N. Jafari
    Poureidi, A.
    COMPUTER SCIENCE JOURNAL OF MOLDOVA, 2019, 27 (01) : 3 - 22
  • [40] ROMAN DOMINATION NUMBER OF DOUBLE FAN GRAPHS
    Raji, J. Jannet
    Meenakshi, S.
    ADVANCES AND APPLICATIONS IN MATHEMATICAL SCIENCES, 2021, 21 (01): : 485 - 491