On the local linear independence of generalized subdivision functions

被引:15
|
作者
Peters, Jorg [1 ]
Wu, Xiaobin
机构
[1] Univ Florida, Dept Comp & Informat Sci, Gainesville, FL 32611 USA
[2] Univ Florida, Dept Engn, Gainesville, FL 32611 USA
基金
英国工程与自然科学研究理事会;
关键词
linear independence; nodal functions; subdivision surfaces; basis; Loop's scheme; Catmull-Clark scheme; local linear independence; condition number;
D O I
10.1137/050627496
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Characterizing the linear and local linear independence of the functions that span a linear space is a key task if the space is to be used computationally. Given a control net, the spanning functions of one spatial coordinate of a generalized subdivision surface are called nodal functions. They are the limit, under subdivision, of associating the value one with one control net node and zero with all others. No characterization of independence of nodal functions has been published to date, even for the two most popular generalized subdivision algorithms, Catmull-Clark subdivision and Loop's subdivision. This paper provides a road map for the veri. cation of linear and local linear independence of generalized subdivision functions. It proves the conjectured global independence of the nodal functions of both algorithms, disproves local linear independence (for higher valences), and establishes linear independence on every surface region corresponding to a facet of the control net. Subtle exceptions, even to global independence, underscore the need for a detailed analysis to provide a sound basis for a number of recently developed computational approaches.
引用
收藏
页码:2389 / 2407
页数:19
相关论文
共 50 条
  • [31] Linear independence criteria for generalized polylogarithms with distinct shifts
    David, Sinnou
    Hirata-Kohno, Norkio
    Kawashima, Makoto
    ACTA ARITHMETICA, 2022, 206 (02) : 127 - 170
  • [32] Non-linear subdivision using local spherical coordinates
    Aspert, N
    Ebrahimi, T
    Vandergheynst, P
    COMPUTER AIDED GEOMETRIC DESIGN, 2003, 20 (03) : 165 - 187
  • [33] LINEAR SUBDIVISION
    PRAUTZSCH, H
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1991, 143 : 223 - 230
  • [34] The generalized complexity of linear Boolean functions
    Redkin, Nikolay P.
    DISCRETE MATHEMATICS AND APPLICATIONS, 2020, 30 (01): : 39 - 44
  • [35] Local monomialization of generalized analytic functions
    Rafael Martín Villaverde
    Jean-Philippe Rolin
    Fernando Sanz Sánchez
    Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 2013, 107 : 189 - 211
  • [36] On linear independence of T-spline blending functions
    Li, Xin
    Zheng, Jianmin
    Sederberg, Thomas W.
    Hughes, Thomas J. R.
    Scott, Michael A.
    COMPUTER AIDED GEOMETRIC DESIGN, 2012, 29 (01) : 63 - 76
  • [37] LINEAR INDEPENDENCE OF VALUES OF PSEUDO-PERIODIC FUNCTIONS
    LAURENT, M
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1980, 290 (09): : 397 - 399
  • [38] Local monomialization of generalized analytic functions
    Martin Villaverde, Rafael
    Rolin, Jean-Philippe
    Sanz Sanchez, Fernando
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2013, 107 (01) : 189 - 211
  • [39] Local properties of Colombeau generalized functions
    Oberguggenberger, M
    Pilipovic, S
    Scarpalezos, D
    MATHEMATISCHE NACHRICHTEN, 2003, 256 : 88 - 99
  • [40] ON THE LINEAR INDEPENDENCE OF TESTING FUNCTIONS USED IN THE METHOD OF MOMENTS
    KAYE, M
    PASALA, KM
    REUSTER, D
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 1992, 5 (11) : 590 - 592