Local monomialization of generalized analytic functions

被引:7
|
作者
Martin Villaverde, Rafael [1 ]
Rolin, Jean-Philippe [2 ]
Sanz Sanchez, Fernando [1 ]
机构
[1] Univ Valladolid, Fac Ciencias, Dept Algebra Geometria & Topol, E-47011 Valladolid, Spain
[2] Univ Bourgogne, CNRS, UMR 5584, Fac Sci,Inst Math Bourgogne, F-21078 Dijon, France
关键词
Generalized power series; Blowing-up; Local monomialization;
D O I
10.1007/s13398-012-0093-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Generalized power series extend the notion of formal power series by considering exponents of each variable ranging in a well ordered set of positive real numbers. Generalized analytic functions are defined locally by the sum of convergent generalized power series with real coefficients. We prove a local monomialization result for these functions: they can be transformed into a monomial via a locally finite collection of finite sequences of local blowings-up. For a convenient framework where this result can be established, we introduce the notion of generalized analytic manifold and the correct definition of blowing-up in this category.
引用
收藏
页码:189 / 211
页数:23
相关论文
共 50 条
  • [1] Local monomialization of generalized analytic functions
    Rafael Martín Villaverde
    Jean-Philippe Rolin
    Fernando Sanz Sánchez
    Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 2013, 107 : 189 - 211
  • [2] COMBINATORIAL MONOMIALIZATION FOR GENERALIZED REAL ANALYTIC FUNCTIONS IN THREE VARIABLES
    Palma-Marquez, Jesus
    MOSCOW MATHEMATICAL JOURNAL, 2022, 22 (03) : 521 - 560
  • [3] Local monomialization of analytic maps
    Cutkosky, Steven Dale
    ADVANCES IN MATHEMATICS, 2017, 307 : 833 - 902
  • [4] Local monomialization
    Cutkosky, SD
    GEOMETRIC AND COMBINATORIAL ASPECTS OF COMMUNTATIVE ALGEBRA, 2001, 217 : 165 - 173
  • [5] GENERALIZED ANALYTIC FUNCTIONS
    BULIRSCH, R
    ZEITSCHRIFT FUR ANGEWANDTE PHYSIK, 1965, 19 (02): : 154 - &
  • [6] Local monomialization of transcendental extensions
    Cutkosky, SD
    ANNALES DE L INSTITUT FOURIER, 2005, 55 (05) : 1517 - +
  • [7] q-analytic functions, fractals and generalized analytic functions
    Pashaev, Oktay K.
    Nalci, Sengul
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2014, 47 (04)
  • [8] Counterexamples to local monomialization in positive characteristic
    Cutkosky, Steven Dale
    MATHEMATISCHE ANNALEN, 2015, 362 (1-2) : 321 - 334
  • [9] THE ANALYTIC CONTINUATION OF GENERALIZED FUNCTIONS
    BOGOLUBOV, NN
    PARASIUK, OS
    DOKLADY AKADEMII NAUK SSSR, 1956, 109 (04): : 717 - 719
  • [10] Real analytic generalized functions
    Pilipovic, S.
    Scarpalezos, D.
    Valmorin, V.
    MONATSHEFTE FUR MATHEMATIK, 2009, 156 (01): : 85 - 102