Local monomialization of generalized analytic functions

被引:7
|
作者
Martin Villaverde, Rafael [1 ]
Rolin, Jean-Philippe [2 ]
Sanz Sanchez, Fernando [1 ]
机构
[1] Univ Valladolid, Fac Ciencias, Dept Algebra Geometria & Topol, E-47011 Valladolid, Spain
[2] Univ Bourgogne, CNRS, UMR 5584, Fac Sci,Inst Math Bourgogne, F-21078 Dijon, France
关键词
Generalized power series; Blowing-up; Local monomialization;
D O I
10.1007/s13398-012-0093-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Generalized power series extend the notion of formal power series by considering exponents of each variable ranging in a well ordered set of positive real numbers. Generalized analytic functions are defined locally by the sum of convergent generalized power series with real coefficients. We prove a local monomialization result for these functions: they can be transformed into a monomial via a locally finite collection of finite sequences of local blowings-up. For a convenient framework where this result can be established, we introduce the notion of generalized analytic manifold and the correct definition of blowing-up in this category.
引用
收藏
页码:189 / 211
页数:23
相关论文
共 50 条
  • [21] VEKUA,IN - GENERALIZED ANALYTIC FUNCTIONS
    NIRENBER.L
    CANADIAN MATHEMATICAL BULLETIN, 1966, 9 (03): : 370 - &
  • [22] On analytic functions related with generalized Robertson functions
    Noor, Khalida Inayat
    Bukhari, Syed Zakar Hussain
    APPLIED MATHEMATICS AND COMPUTATION, 2009, 215 (08) : 2965 - 2970
  • [23] Counterexamples to local monomialization in positive characteristic
    Steven Dale Cutkosky
    Mathematische Annalen, 2015, 362 : 321 - 334
  • [24] On local behavior of analytic functions
    Brudnyi, A
    JOURNAL OF FUNCTIONAL ANALYSIS, 1999, 169 (02) : 481 - 493
  • [25] Local extrema of analytic functions
    Barone-Netto, Angelo
    Gorni, Gianluca
    Zampieri, Gaetano
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 1996, 3 (03): : 287 - 303
  • [26] Logarithmic Potential and Generalized Analytic Functions
    Gutlyanskiĭ V.
    Nesmelova O.
    Ryazanov V.
    Yefimushkin A.
    Journal of Mathematical Sciences, 2021, 256 (6) : 735 - 752
  • [27] SPACES OF GENERALIZED ANALYTIC-FUNCTIONS
    MYERS, DE
    ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1972, 23 (1-2): : 5 - 12
  • [28] Moutard Transform for Generalized Analytic Functions
    Grinevich, P. G.
    Novikov, R. G.
    JOURNAL OF GEOMETRIC ANALYSIS, 2016, 26 (04) : 2984 - 2995
  • [29] ON LIOUVILLES THEOREM FOR GENERALIZED ANALYTIC FUNCTIONS
    VINOGRAD.VS
    DOKLADY AKADEMII NAUK SSSR, 1968, 183 (03): : 503 - &
  • [30] Moutard Transform for Generalized Analytic Functions
    P. G. Grinevich
    R. G. Novikov
    The Journal of Geometric Analysis, 2016, 26 : 2984 - 2995