Learning Rich Features from RGB-D Images for Object Detection and Segmentation

被引:991
|
作者
Gupta, Saurabh [1 ]
Girshick, Ross [1 ]
Arbelaez, Pablo [2 ]
Malik, Jitendra [1 ]
机构
[1] Univ Calif Berkeley, Berkeley, CA 94720 USA
[2] Univ Ios Andes, Bogota, Colombia
来源
关键词
RGB-D perception; object detection; object segmentation;
D O I
10.1007/978-3-319-10584-0_23
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we study the problem of object detection for RGB-D images using semantically rich image and depth features. We propose a new geocentric embedding for depth images that encodes height above ground and angle with gravity for each pixel in addition to the horizontal disparity. We demonstrate that this geocentric embedding works better than using raw depth images for learning feature representations with convolutional neural networks. Our final object detection system achieves an average precision of 37.3%, which is a 56% relative improvement over existing methods. We then focus on the task of instance segmentation where we label pixels belonging to object instances found by our detector. For this task, we propose a decision forest approach that classifies pixels in the detection window as foreground or background using a family of unary and binary tests that query shape and geocentric pose features. Finally, we use the output from our object detectors in an existing superpixel classification framework for semantic scene segmentation and achieve a 24% relative improvement over current state-of-the-art for the object categories that we study. We believe advances such as those represented in this paper will facilitate the use of perception in fields like robotics.
引用
收藏
页码:345 / 360
页数:16
相关论文
共 50 条
  • [31] Object Detection and Tracking Under Occlusion for Object-Level RGB-D Video Segmentation
    Xie, Qian
    Remil, Oussama
    Guo, Yanwen
    Wang, Meng
    Wei, Mingqiang
    Wang, Jun
    IEEE TRANSACTIONS ON MULTIMEDIA, 2018, 20 (03) : 580 - 592
  • [32] Online RGB-D Tracking via Detection-Learning-Segmentation
    An, Ning
    Zhao, Xiao-Guang
    Hou, Zeng-Guang
    2016 23RD INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2016, : 1231 - 1236
  • [33] Multimodal Convolutional Neural Network for Object Detection Using RGB-D Images
    Mocanu, Irina
    Clapon, Cosmin
    2018 41ST INTERNATIONAL CONFERENCE ON TELECOMMUNICATIONS AND SIGNAL PROCESSING (TSP), 2018, : 307 - 310
  • [34] RGB-D salient object detection: A survey
    Tao Zhou
    Deng-Ping Fan
    Ming-Ming Cheng
    Jianbing Shen
    Ling Shao
    ComputationalVisualMedia, 2021, 7 (01) : 37 - 69
  • [35] RGB-D salient object detection: A survey
    Zhou, Tao
    Fan, Deng-Ping
    Cheng, Ming-Ming
    Shen, Jianbing
    Shao, Ling
    COMPUTATIONAL VISUAL MEDIA, 2021, 7 (01) : 37 - 69
  • [36] RGB-D Object Tracking with Occlusion Detection
    Xie, Yujun
    Lu, Yao
    Gu, Shuang
    2019 15TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY (CIS 2019), 2019, : 11 - 15
  • [37] RGB-D salient object detection: A survey
    Tao Zhou
    Deng-Ping Fan
    Ming-Ming Cheng
    Jianbing Shen
    Ling Shao
    Computational Visual Media, 2021, 7 : 37 - 69
  • [38] Robust 6D Object Pose Estimation by Learning RGB-D Features
    Tian, Meng
    Pan, Liang
    Ang, Marcelo H., Jr.
    Lee, Gim Hee
    2020 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2020, : 6218 - 6224
  • [39] Salient Object Detection in RGB-D Videos
    Mou, Ao
    Lu, Yukang
    He, Jiahao
    Min, Dingyao
    Fu, Keren
    Zhao, Qijun
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2024, 33 : 6660 - 6675
  • [40] Calibrated RGB-D Salient Object Detection
    Ji, Wei
    Li, Jingjing
    Yu, Shuang
    Zhang, Miao
    Piao, Yongri
    Yao, Shunyu
    Bi, Qi
    Ma, Kai
    Zheng, Yefeng
    Lu, Huchuan
    Cheng, Li
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 9466 - 9476