Salient Object Detection in RGB-D Videos

被引:0
|
作者
Mou, Ao [1 ]
Lu, Yukang [1 ]
He, Jiahao [1 ]
Min, Dingyao [1 ]
Fu, Keren [1 ]
Zhao, Qijun [1 ]
机构
[1] Sichuan Univ, Coll Comp Sci, Chengdu 610065, Peoples R China
关键词
Salient object detection; RGB-D videos; depth; optical flow; multi-modal fusion; NETWORK; OPTIMIZATION; FUSION;
D O I
10.1109/TIP.2024.3498326
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Given the widespread adoption of depth-sensing acquisition devices, RGB-D videos and related data/media have gained considerable traction in various aspects of daily life. Consequently, conducting salient object detection (SOD) in RGB-D videos presents a highly promising and evolving avenue. Despite the potential of this area, SOD in RGB-D videos remains somewhat under-explored, with RGB-D SOD and video SOD (VSOD) traditionally studied in isolation. To explore this emerging field, this paper makes two primary contributions: the dataset and the model. On one front, we construct the RDVS dataset, a new RGB-D VSOD dataset with realistic depth and characterized by its diversity of scenes and rigorous frame-by-frame annotations. We validate the dataset through comprehensive attribute and object-oriented analyses, and provide training and testing splits. Moreover, we introduce DCTNet+, a three-stream network tailored for RGB-D VSOD, with an emphasis on RGB modality and treats depth and optical flow as auxiliary modalities. In pursuit of effective feature enhancement, refinement, and fusion for precise final prediction, we propose two modules: the multi-modal attention module (MAM) and the refinement fusion module (RFM). To enhance interaction and fusion within RFM, we design a universal interaction module (UIM) and then integrate holistic multi-modal attentive paths (HMAPs) for refining multi-modal low-level features before reaching RFMs. Comprehensive experiments, conducted on pseudo RGB-D video datasets alongside our proposed RDVS, highlight the superiority of DCTNet+ over 19 VSOD models and 14 RGB-D SOD models. Additionally, insightful ablation experiments were performed on both pseudo and realistic RGB-D video datasets to demonstrate the advantages of individual modules as well as the necessity of introducing realistic depth into VSOD. Our code together with RDVS dataset will be available at https://github.com/kerenfu/RDVS/.
引用
收藏
页码:6660 / 6675
页数:16
相关论文
共 50 条
  • [1] RGB-D salient object detection: A survey
    Tao Zhou
    Deng-Ping Fan
    Ming-Ming Cheng
    Jianbing Shen
    Ling Shao
    ComputationalVisualMedia, 2021, 7 (01) : 37 - 69
  • [2] RGB-D salient object detection: A survey
    Zhou, Tao
    Fan, Deng-Ping
    Cheng, Ming-Ming
    Shen, Jianbing
    Shao, Ling
    COMPUTATIONAL VISUAL MEDIA, 2021, 7 (01) : 37 - 69
  • [3] RGB-D salient object detection: A survey
    Tao Zhou
    Deng-Ping Fan
    Ming-Ming Cheng
    Jianbing Shen
    Ling Shao
    Computational Visual Media, 2021, 7 : 37 - 69
  • [4] Calibrated RGB-D Salient Object Detection
    Ji, Wei
    Li, Jingjing
    Yu, Shuang
    Zhang, Miao
    Piao, Yongri
    Yao, Shunyu
    Bi, Qi
    Ma, Kai
    Zheng, Yefeng
    Lu, Huchuan
    Cheng, Li
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 9466 - 9476
  • [5] DVSOD: RGB-D Video Salient Object Detection
    Li, Jingjing
    Ji, Wei
    Wang, Size
    Li, Wenbo
    Cheng, Li
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [6] Advancing in RGB-D Salient Object Detection: A Survey
    Chen, Ai
    Li, Xin
    He, Tianxiang
    Zhou, Junlin
    Chen, Duanbing
    APPLIED SCIENCES-BASEL, 2024, 14 (17):
  • [7] Adaptive Fusion for RGB-D Salient Object Detection
    Wang, Ningning
    Gong, Xiaojin
    IEEE ACCESS, 2019, 7 : 55277 - 55284
  • [8] AirSOD: A Lightweight Network for RGB-D Salient Object Detection
    Zeng, Zhihong
    Liu, Haijun
    Chen, Fenglei
    Tan, Xiaoheng
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (03) : 1656 - 1669
  • [9] Aggregate interactive learning for RGB-D salient object detection
    Wu, Jingyu
    Sun, Fuming
    Xu, Rui
    Meng, Jie
    Wang, Fasheng
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 195
  • [10] Local Background Enclosure for RGB-D Salient Object Detection
    Feng, David
    Barnes, Nick
    You, Shaodi
    McCarthy, Chris
    2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 2343 - 2350