Cloud Region Segmentation from All Sky Images using Double K-Means Clustering

被引:2
|
作者
Dinc, Semih [1 ]
Russell, Randy [2 ]
Parra, Luis Alberto Cueva [3 ]
机构
[1] EagleView Technol, Bellevue, WA 98004 USA
[2] Auburn Univ, Dept Chem, Montgomery, AL USA
[3] Univ North Georgia, Comp Sci & Informat Syst, Dahlonega, GA USA
来源
2022 IEEE INTERNATIONAL SYMPOSIUM ON MULTIMEDIA (ISM) | 2022年
基金
美国国家科学基金会;
关键词
Cloud Region Segmentation; All Sky Images; K-means; Image Processing; CLASSIFICATION;
D O I
10.1109/ISM55400.2022.00058
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The segmentation of sky images into regions of cloud and clear sky allows atmospheric scientists to determine the fraction of cloud cover and the distribution of cloud without resorting to subjective estimates by a human observer. This is a challenging problem because cloud boundaries and cirroform cloud regions are often semi-transparent and indistinct. In this study, we propose a lightweight, unsupervised methodology to identify cloud regions in ground-based hemispherical sky images. Our method offers a fast and adaptive approach without the necessity of fixed thresholds by utilizing K-means clustering on transformed pixel values. We present the results of our method for two data sets and compare them with three different methods in the literature.
引用
收藏
页码:261 / 262
页数:2
相关论文
共 50 条
  • [21] Level set segmentation of mammogram images using adaptive cuckoo K-means clustering
    Srinivas, Azmeera
    Prasad, V. V. K. D. V.
    Kumari, B. Leela
    APPLIED NANOSCIENCE, 2022, 13 (3) : 1877 - 1891
  • [22] SEGMENTATION OF CROP DISEASE IMAGES WITH AN IMPROVED K-MEANS CLUSTERING ALGORITHM
    Wang, Z.
    Wang, K.
    Pan, S.
    Han, Y.
    APPLIED ENGINEERING IN AGRICULTURE, 2018, 34 (02) : 277 - 289
  • [23] Cloud Satellite Image Segmentation using Meng Hee Heng K-Means and DBSCAN Clustering
    Nailussa'ada
    Harsono, Tri
    Basuki, Achmad
    2018 INTERNATIONAL ELECTRONICS SYMPOSIUM ON KNOWLEDGE CREATION AND INTELLIGENT COMPUTING (IES-KCIC), 2018, : 367 - 371
  • [24] Tumor segmentation from brain MR images using STSA based modified K-means clustering approach
    Lather, Mansi
    Singh, Parvinder
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2022, 43 (03) : 2579 - 2595
  • [25] Tumor segmentation from brain MR images using STSA based modified K-means clustering approach
    Lather, Mansi
    Singh, Parvinder
    Journal of Intelligent and Fuzzy Systems, 2022, 43 (03): : 2579 - 2595
  • [26] Automatic Segmentation of Ovarian Follicle using K-means Clustering
    Kiruthika, V
    Ramya, M. M.
    2014 FIFTH INTERNATIONAL CONFERENCE ON SIGNAL AND IMAGE PROCESSING (ICSIP 2014), 2014, : 137 - 141
  • [27] TEXTURE BASED COLOR SEGMENTATION FOR INFRARED RIVER ICE IMAGES USING K-MEANS CLUSTERING
    Bharathi, P. T.
    Subashini, P.
    INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, IMAGE PROCESSING AND PATTERN RECOGNITION (ICSIPR 2013), 2013, : 298 - 302
  • [28] Segmentation of peen forming patterns using k-means clustering
    Sushitskii, Vladislav
    Miao, Hong Yan
    Levesque, Martin
    Gosselin, Frederick P.
    JOURNAL OF MANUFACTURING PROCESSES, 2024, 119 : 867 - 877
  • [29] Adaptive simplification of point cloud using k-means clustering
    Shi, Bao-Quan
    Liang, Jin
    Liu, Qing
    COMPUTER-AIDED DESIGN, 2011, 43 (08) : 910 - 922
  • [30] Evaluation of segmentation in magnetic resonance images using k-means and fuzzy c-means clustering algorithms
    Primerjava razclenjevanja magnetnoresonancnih slik z uporabo postopkov k-tih in mehkih c-tih povprecij rojenja
    Finkšt, T. (tomaz.finkst@fs.uni-lj.si), 1600, Electrotechnical Society of Slovenia (79):