Cloud Region Segmentation from All Sky Images using Double K-Means Clustering

被引:2
|
作者
Dinc, Semih [1 ]
Russell, Randy [2 ]
Parra, Luis Alberto Cueva [3 ]
机构
[1] EagleView Technol, Bellevue, WA 98004 USA
[2] Auburn Univ, Dept Chem, Montgomery, AL USA
[3] Univ North Georgia, Comp Sci & Informat Syst, Dahlonega, GA USA
来源
2022 IEEE INTERNATIONAL SYMPOSIUM ON MULTIMEDIA (ISM) | 2022年
基金
美国国家科学基金会;
关键词
Cloud Region Segmentation; All Sky Images; K-means; Image Processing; CLASSIFICATION;
D O I
10.1109/ISM55400.2022.00058
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The segmentation of sky images into regions of cloud and clear sky allows atmospheric scientists to determine the fraction of cloud cover and the distribution of cloud without resorting to subjective estimates by a human observer. This is a challenging problem because cloud boundaries and cirroform cloud regions are often semi-transparent and indistinct. In this study, we propose a lightweight, unsupervised methodology to identify cloud regions in ground-based hemispherical sky images. Our method offers a fast and adaptive approach without the necessity of fixed thresholds by utilizing K-means clustering on transformed pixel values. We present the results of our method for two data sets and compare them with three different methods in the literature.
引用
收藏
页码:261 / 262
页数:2
相关论文
共 50 条
  • [11] Optimization of k-means clustering Segmentation in Head CT images
    Ma, Guoqiang
    Wang, Xiaojuan
    Li, XiaoLan
    INFORMATION TECHNOLOGY APPLICATIONS IN INDUSTRY II, PTS 1-4, 2013, 411-414 : 1247 - +
  • [12] Cloud Classification Using Ground Based Images Using CBIR and K-Means Clustering
    Rudrappa, Gujanatti
    Vijapur, Nataraj
    Jadhav, Sushant
    Manage, Prabhakar
    BIOSCIENCE BIOTECHNOLOGY RESEARCH COMMUNICATIONS, 2020, 13 (13): : 95 - 99
  • [13] An Improved K-Means Clustering for Segmentation of Pancreatic Tumor from CT Images
    Roy, R. Reena
    Mala, G. S. Anandha
    IETE JOURNAL OF RESEARCH, 2023, 69 (07) : 3966 - 3973
  • [14] THE POTENTIAL OF DOUBLE K-MEANS CLUSTERING FOR BANANA IMAGE SEGMENTATION
    Hu, Meng-han
    Dong, Qing-li
    Liu, Bao-lin
    Malakar, Pradeep K.
    JOURNAL OF FOOD PROCESS ENGINEERING, 2014, 37 (01) : 10 - 18
  • [15] Explainable Customer Segmentation Using K-means Clustering
    Khan, Riyo Hayat
    Dofadar, Dibyo Fabian
    Alam, Md Golam Rabiul
    2021 IEEE 12TH ANNUAL UBIQUITOUS COMPUTING, ELECTRONICS & MOBILE COMMUNICATION CONFERENCE (UEMCON), 2021, : 639 - 643
  • [16] Segmentation of Images Using Two Parameter Logistic Type Distribution and K-Means Clustering
    Rao, K. Srinivasa
    Satyanarayana, K., V
    Rao, P. Srinivasa
    INTERNATIONAL JOURNAL OF GRID AND DISTRIBUTED COMPUTING, 2018, 11 (12): : 1 - 20
  • [17] SEGMENTATION OF DCEMR IMAGES OF CERVICAL CANCERS USING K-MEANS CLUSTERING FOR OUTCOME PREDICTION
    Andersen, E. K. F.
    Kristensen, G. B.
    Lyng, H.
    Malinen, E.
    RADIOTHERAPY AND ONCOLOGY, 2011, 99 : S129 - S129
  • [18] Level set segmentation of mammogram images using adaptive cuckoo K-means clustering
    Azmeera Srinivas
    V. V. K. D. V. Prasad
    B. Leela Kumari
    Applied Nanoscience, 2023, 13 : 1877 - 1891
  • [19] Unsupervised segmentation of large scale spatial images using K-means clustering approach
    Luo, JC
    Ye, ZM
    Bhattacharya, P
    Proceedings of the Eighth IASTED International Conference on Intelligent Systems and Control, 2005, : 410 - 415
  • [20] A Study on the Segmentation and Classification of Diabetic Retinopathy Images Using the K-Means Clustering Method
    Incir, Ramazan
    Bozkurt, Ferhat
    32ND IEEE SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU 2024, 2024,