Eigenpairs for the Analysis of Complete Lyapunov Functions

被引:0
|
作者
Argaez, Carlos [1 ]
Giesl, Peter [2 ]
Hafstein, Sigurdur Freyr [3 ]
机构
[1] Marine & Freshwater Res Inst, Fornubuoir 5, IS-220 Hafnarfjorour, Iceland
[2] Univ Iceland, Sci Inst, Dunhagi 3, IS-107 Reykjavik, Iceland
[3] Univ Sussex, Dept Math, Falmer BN1 9QH, England
关键词
D O I
10.1155/2022/3160052
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A complete Lyapunov function describes the qualitative behaviour of a dynamical system: the areas where the orbital derivative vanishes and where it is strictly negative characterise the chain recurrent set and the gradient-like flow, respectively. Moreover, its local maxima and minima show the stability properties of the connected components of the chain recurrent set. In this study, we use collocation with radial basis functions to numerically compute approximations to complete Lyapunov functions and then localise and analyse the stability properties of the connected components of the chain recurrent set using its gradient and Hessian. In particular, we improve the estimation of the chain recurrent set, and we determine the dimension and the stability properties of its connected components.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Higher derivatives of Lyapunov functions and cone-valued Lyapunov functions
    Koksal, S
    Lakshmikantham, V
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1996, 26 (09) : 1555 - 1564
  • [42] Construction of Lyapunov Functions
    Giesl, Peter
    CONSTRUCTION OF GLOBAL LYAPUNOV FUNCTIONS USING RADIAL BASIS FUNCTIONS, 2007, 1904 : 99 - 114
  • [43] NOTE ON LYAPUNOV FUNCTIONS
    SMITH, JR
    MATRIX AND TENSOR QUARTERLY, 1975, 25 (03): : 101 - 103
  • [44] On almost Lyapunov functions
    Liberzon, Daniel
    Ying, Charles
    Zharnitsky, Vadim
    2014 IEEE 53RD ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2014, : 3083 - 3088
  • [45] On the construction of the Lyapunov functions
    Propoi, AI
    DOKLADY AKADEMII NAUK, 2000, 371 (06) : 739 - 741
  • [46] PERTURBING LYAPUNOV FUNCTIONS
    LAKSHMIKANTHAM, V
    LEELA, S
    MATHEMATICAL SYSTEMS THEORY, 1976, 10 (01): : 85 - 90
  • [47] On quadratic Lyapunov functions
    Cheng, DZ
    Guo, L
    Huang, J
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2003, 48 (05) : 885 - 890
  • [48] QUANTIZATION OF LYAPUNOV FUNCTIONS
    Sharko, Yu. V.
    UKRAINIAN MATHEMATICAL JOURNAL, 2011, 62 (09) : 1502 - 1505
  • [49] Lyapunov modular functions
    Avallone A.
    Rendiconti del Circolo Matematico di Palermo, 2004, 53 (2) : 195 - 204
  • [50] Quantization of Lyapunov functions
    Sharko Y.V.
    Ukrainian Mathematical Journal, 2011, 62 (9) : 1502 - 1505