Eigenpairs for the Analysis of Complete Lyapunov Functions

被引:0
|
作者
Argaez, Carlos [1 ]
Giesl, Peter [2 ]
Hafstein, Sigurdur Freyr [3 ]
机构
[1] Marine & Freshwater Res Inst, Fornubuoir 5, IS-220 Hafnarfjorour, Iceland
[2] Univ Iceland, Sci Inst, Dunhagi 3, IS-107 Reykjavik, Iceland
[3] Univ Sussex, Dept Math, Falmer BN1 9QH, England
关键词
D O I
10.1155/2022/3160052
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A complete Lyapunov function describes the qualitative behaviour of a dynamical system: the areas where the orbital derivative vanishes and where it is strictly negative characterise the chain recurrent set and the gradient-like flow, respectively. Moreover, its local maxima and minima show the stability properties of the connected components of the chain recurrent set. In this study, we use collocation with radial basis functions to numerically compute approximations to complete Lyapunov functions and then localise and analyse the stability properties of the connected components of the chain recurrent set using its gradient and Hessian. In particular, we improve the estimation of the chain recurrent set, and we determine the dimension and the stability properties of its connected components.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] COMPUTING COMPLETE LYAPUNOV FUNCTIONS FOR DISCRETE-TIME DYNAMICAL SYSTEMS
    Giesl, Peter
    Langhorne, Zachary
    Argaez, Carlos
    Hafstein, Sigurdur
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2021, 26 (01): : 299 - 336
  • [22] Lyapunov Functions in the Global Analysis of Chaotic Systems
    Leonov, G. A.
    UKRAINIAN MATHEMATICAL JOURNAL, 2018, 70 (01) : 42 - 66
  • [23] Linear Programming, Lyapunov Functions, and Performance Analysis
    Glynn, Peter
    QUANTITATIVE EVALUATION OF SYSTEMS: QEST 2008, PROCEEDINGS, 2008, : 201 - 201
  • [24] Lyapunov Functions in the Global Analysis of Chaotic Systems
    G. A. Leonov
    Ukrainian Mathematical Journal, 2018, 70 : 42 - 66
  • [25] On absolute stability analysis by polyhedral Lyapunov functions
    Polanski, A
    AUTOMATICA, 2000, 36 (04) : 573 - 578
  • [26] Interpretability of Path-Complete Techniques and Memory-Based Lyapunov Functions
    Della Rossa, Matteo
    Jungers, Raphael M. M.
    IEEE CONTROL SYSTEMS LETTERS, 2023, 7 : 781 - 786
  • [27] Path-Complete Lyapunov Functions for Continuous-Time Switching Systems
    Della Rossa, Matteo
    Pasquini, Mirko
    Angeli, David
    2020 59TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2020, : 3279 - 3284
  • [28] Lyapunov Functions
    Giesl, Peter
    CONSTRUCTION OF GLOBAL LYAPUNOV FUNCTIONS USING RADIAL BASIS FUNCTIONS, 2007, 1904 : 11 - 59
  • [29] Gap Functions and Lyapunov Functions
    Massimo Pappalardo
    Mauro Passacantando
    Journal of Global Optimization, 2004, 28 : 379 - 385
  • [30] Gap functions and Lyapunov functions
    Pappalardo, M
    Passacantando, M
    JOURNAL OF GLOBAL OPTIMIZATION, 2004, 28 (3-4) : 379 - 385