Noise-robust quantum sensing via optimal multi-probe spectroscopy

被引:21
|
作者
Mueller, Matthias M. [1 ,2 ,3 ,4 ]
Gherardini, Stefano [1 ,2 ,3 ,4 ]
Caruso, Filippo [1 ,2 ,3 ,4 ]
机构
[1] QSTAR, Largo Enrico Fermi 2, I-50125 Florence, Italy
[2] CNR, INO, Largo Enrico Fermi 6, I-50125 Florence, Italy
[3] LENS, Via Nello Carrara 1, I-50019 Sesto Fiorentino, Italy
[4] Univ Firenze, Dipartimento Fis & Astron, Via Giovanni Sansone 1, I-50019 Sesto Fiorentino, Italy
来源
SCIENTIFIC REPORTS | 2018年 / 8卷
关键词
Spectral Leakage; Fisher Information; Filter Operation Time; Pulse Transition Function; Dephasing Rate;
D O I
10.1038/s41598-018-32434-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The dynamics of quantum systems are unavoidably influenced by their environment, but in turn observing a quantum system (probe) can allow one to measure its environment: Measurements and controlled manipulation of the probe such as dynamical decoupling sequences as an extension of the Ramsey interference measurement allow to spectrally resolve a noise field coupled to the probe. Here, we introduce fast and robust estimation strategies for the characterization of the spectral properties of classical and quantum dephasing environments. These strategies are based on filter function orthogonalization, optimal control filters maximizing the relevant Fisher Information and multi-qubit entanglement. We investigate and quantify the robustness of the schemes under different types of noise such as finite-precision measurements, dephasing of the probe, spectral leakage and slow temporal fluctuations of the spectrum.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Noise-Robust Semi-supervised Multi-modal Machine Translation
    Li, Lin
    Hu, Kaixi
    Tayir, Turghun
    Liu, Jianquan
    Lee, Kong Aik
    PRICAI 2022: TRENDS IN ARTIFICIAL INTELLIGENCE, PT II, 2022, 13630 : 155 - 168
  • [32] Towards training noise-robust anomaly detection via collaborative adversarial flows
    Cheng, Hao
    Luo, Jiaxiang
    Zhang, Xianyong
    Liu, Haiming
    Wu, Fan
    MEASUREMENT, 2025, 242
  • [33] Sign-Coded Exposure Sensing for Noise-Robust High-Speed Imaging
    Baldwin, R. Wes
    Asari, Vijayan
    Hirakawa, Keigo
    IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2024, 10 : 329 - 342
  • [34] Blending Optimal Control and Biologically Plausible Learning for Noise-Robust Physical Neural Networks
    Sunada, Satoshi
    Niiyama, Tomoaki
    Kanno, Kazutaka
    Nogami, Rin
    Rohm, Andre
    Awano, Takato
    Uchida, Atsushi
    PHYSICAL REVIEW LETTERS, 2025, 134 (01)
  • [35] Noise-robust exploration of many-body quantum states on near-term quantum devices
    Johannes Borregaard
    Matthias Christandl
    Daniel Stilck França
    npj Quantum Information, 7
  • [36] Noise-robust exploration of many-body quantum states on near-term quantum devices
    Borregaard, Johannes
    Christandl, Matthias
    Franca, Daniel Stilck
    NPJ QUANTUM INFORMATION, 2021, 7 (01)
  • [37] Noise-robust voice conversion using adversarial training with multi-feature decoupling
    Chen, Lele
    Zhang, Xiongwei
    Li, Yihao
    Sun, Meng
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 131
  • [38] Noise sensing via stochastic quantum Zeno
    Mueller, Matthias M.
    Gherardini, Stefano
    Dalla Pozza, Nicola
    Caruso, Filippo
    PHYSICS LETTERS A, 2020, 384 (13)
  • [39] TRAINING MULTI-TASK ADVERSARIAL NETWORK FOR EXTRACTING NOISE-ROBUST SPEAKER EMBEDDING
    Zhou, Jianfeng
    Jiang, Tao
    Li, Lin
    Hong, Qingyang
    Wang, Zhe
    Xia, Bingyin
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 6196 - 6200
  • [40] Noise-robust few-shot classification via variational adversarial data augmentation
    Xu, Renjie
    Liu, Baodi
    Zhang, Kai
    Chen, Honglong
    Tao, Dapeng
    Liu, Weifeng
    COMPUTATIONAL VISUAL MEDIA, 2025, 11 (01): : 227 - 239