Noise-robust quantum sensing via optimal multi-probe spectroscopy

被引:22
|
作者
Mueller, Matthias M. [1 ,2 ,3 ,4 ]
Gherardini, Stefano [1 ,2 ,3 ,4 ]
Caruso, Filippo [1 ,2 ,3 ,4 ]
机构
[1] QSTAR, Largo Enrico Fermi 2, I-50125 Florence, Italy
[2] CNR, INO, Largo Enrico Fermi 6, I-50125 Florence, Italy
[3] LENS, Via Nello Carrara 1, I-50019 Sesto Fiorentino, Italy
[4] Univ Firenze, Dipartimento Fis & Astron, Via Giovanni Sansone 1, I-50019 Sesto Fiorentino, Italy
来源
SCIENTIFIC REPORTS | 2018年 / 8卷
关键词
Spectral Leakage; Fisher Information; Filter Operation Time; Pulse Transition Function; Dephasing Rate;
D O I
10.1038/s41598-018-32434-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The dynamics of quantum systems are unavoidably influenced by their environment, but in turn observing a quantum system (probe) can allow one to measure its environment: Measurements and controlled manipulation of the probe such as dynamical decoupling sequences as an extension of the Ramsey interference measurement allow to spectrally resolve a noise field coupled to the probe. Here, we introduce fast and robust estimation strategies for the characterization of the spectral properties of classical and quantum dephasing environments. These strategies are based on filter function orthogonalization, optimal control filters maximizing the relevant Fisher Information and multi-qubit entanglement. We investigate and quantify the robustness of the schemes under different types of noise such as finite-precision measurements, dephasing of the probe, spectral leakage and slow temporal fluctuations of the spectrum.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] RGBT Tracking via Noise-Robust Cross-Modal Ranking
    Li, Chenglong
    Xiang, Zhiqiang
    Tang, Jin
    Luo, Bin
    Wang, Futian
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (09) : 5019 - 5031
  • [22] Enhancing traffic monitoring with noise-robust distributed acoustic sensing and deep learning
    Wang, Zheng
    Zhang, Taiyin
    Chen, Huiliang
    Zhang, Cheng-Cheng
    Shi, Bin
    JOURNAL OF APPLIED GEOPHYSICS, 2025, 233
  • [23] Multi-condition training for noise-robust speech emotion recognition
    Chiba, Yuya
    Nose, Takashi
    Ito, Akinori
    ACOUSTICAL SCIENCE AND TECHNOLOGY, 2019, 40 (06) : 406 - 409
  • [24] Optimal and noise-robust extraction of Fracture Mechanics parameters from kinematic measurements
    Rethore, Julien
    Roux, Stephane
    Hild, Francois
    ENGINEERING FRACTURE MECHANICS, 2011, 78 (09) : 1827 - 1845
  • [25] Noise-robust ground state energy estimates from deep quantum circuits
    Vallury, Harish J.
    Jones, Michael A.
    White, Gregory A. L.
    Creevey, Floyd M.
    Hill, Charles D.
    Hollenberg, Lloyd C. L.
    QUANTUM, 2023, 7
  • [26] Training Noise-Robust Deep Neural Networks via Meta-Learning
    Wang, Zhen
    Hu, Guosheng
    Hu, Qinghua
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 4523 - 4532
  • [27] Noise-robust semi-supervised learning via fast sparse coding
    Lu, Zhiwu
    Wang, Liwei
    PATTERN RECOGNITION, 2015, 48 (02) : 605 - 612
  • [28] Noise-Robust ISAR Translational Motion Compensation via HLPT-GSCFT
    Liu, Fengkai
    Huang, Darong
    Guo, Xinrong
    Feng, Cunqian
    REMOTE SENSING, 2022, 14 (24)
  • [29] Robust quantum sensing with strongly interacting probe systems
    Dooley, Shane
    Hanks, Michael
    Nakayama, Shojun
    Munro, William J.
    Nemoto, Kae
    NPJ QUANTUM INFORMATION, 2018, 4
  • [30] Robust quantum sensing with strongly interacting probe systems
    Shane Dooley
    Michael Hanks
    Shojun Nakayama
    William J. Munro
    Kae Nemoto
    npj Quantum Information, 4