Discovering Concept-Level Event Associations from a Text Stream

被引:2
|
作者
Ge, Tao [1 ,2 ]
Cui, Lei [3 ]
Ji, Heng [4 ]
Chang, Baobao [1 ,2 ]
Sui, Zhifang [1 ,2 ]
机构
[1] Peking Univ, Key Lab Computat Linguist, Minist Educ, Sch EECS, Beijing, Peoples R China
[2] Collaborat Innovat Ctr Language Abil, Xuzhou, Peoples R China
[3] Microsoft Res, Beijing, Peoples R China
[4] Rensselaer Polytech Inst, Troy, NY USA
基金
中国国家自然科学基金;
关键词
D O I
10.1007/978-3-319-50496-4_34
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We study an open text mining problem - discovering concept-level event associations from a text stream. We investigate the importance and challenge of this task and propose a novel solution by using event sequential patterns. The proposed approach can discover important event associations implicitly expressed. The discovered event associations are general and useful as knowledge for applications such as event prediction.
引用
收藏
页码:413 / 424
页数:12
相关论文
共 50 条
  • [41] Lcp-mixer: a lightweight model based on concept-level perception for NLP
    Tang, Huanling
    Wang, Yulin
    Li, Ruiquan
    INTERNATIONAL JOURNAL OF DATA SCIENCE AND ANALYTICS, 2024,
  • [42] Sentic patterns: Dependency-based rules for concept-level sentiment analysis
    Poria, Soujanya
    Cambria, Erik
    Winterstein, Gregoire
    Huang, Guang-Bin
    KNOWLEDGE-BASED SYSTEMS, 2014, 69 : 45 - 63
  • [43] Sentic patterns: Dependency-based rules for concept-level sentiment analysis
    Cambria, Erik, 1600, Elsevier B.V., Netherlands (69):
  • [44] Sinica Semantic Parser for ESWC'14 Concept-Level Semantic Analysis Challenge
    Virk, Shafqat Mumtaz
    Lee, Yann-Huei
    Ku, Lun-Wei
    SEMANTIC WEB EVALUATION CHALLENGE, 2014, 475 : 48 - 52
  • [45] Neural Multi-hop Logical Query Answering with Concept-Level Answers
    Tang, Zhenwei
    Pei, Shichao
    Peng, Xi
    Zhuang, Fuzhen
    Zhang, Xiangliang
    Hoehndorf, Robert
    SEMANTIC WEB, ISWC 2023, PART I, 2023, 14265 : 522 - 540
  • [46] Concept-Level Analysis and Design of Polyurea for Enhanced Blast-Mitigation Performance
    Grujicic, M.
    d'Entremont, B. P.
    Pandurangan, B.
    Runt, J.
    Tarter, J.
    Dillon, G.
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2012, 21 (10) : 2024 - 2037
  • [47] Sentic patterns: Dependency-based rules for concept-level sentiment analysis
    Cambria, Erik (cambria@ntu.edu.sg), 1600, Elsevier B.V., Netherlands (69):
  • [48] Discovering high-level BPMN process models from event data
    Kalenkova, Anna
    Burattin, Andrea
    de Leoni, Massimiliano
    van der Aalst, Wil
    Sperduti, Alessandro
    BUSINESS PROCESS MANAGEMENT JOURNAL, 2019, 25 (05) : 995 - 1019
  • [49] Concept-Level Model of Integrated Syntax and Semantic Validation for Internet of Medical Things Data
    Koren, Ana
    Jurcevic, Marko
    2021 IEEE 15TH INTERNATIONAL CONFERENCE ON SEMANTIC COMPUTING (ICSC 2021), 2021, : 207 - 210
  • [50] Concept-Level Sentiment Analysis with Dependency-Based Semantic Parsing: A Novel Approach
    Agarwal, Basant
    Poria, Soujanya
    Mittal, Namita
    Gelbukh, Alexander
    Hussain, Amir
    COGNITIVE COMPUTATION, 2015, 7 (04) : 487 - 499