Discovering Concept-Level Event Associations from a Text Stream

被引:2
|
作者
Ge, Tao [1 ,2 ]
Cui, Lei [3 ]
Ji, Heng [4 ]
Chang, Baobao [1 ,2 ]
Sui, Zhifang [1 ,2 ]
机构
[1] Peking Univ, Key Lab Computat Linguist, Minist Educ, Sch EECS, Beijing, Peoples R China
[2] Collaborat Innovat Ctr Language Abil, Xuzhou, Peoples R China
[3] Microsoft Res, Beijing, Peoples R China
[4] Rensselaer Polytech Inst, Troy, NY USA
基金
中国国家自然科学基金;
关键词
D O I
10.1007/978-3-319-50496-4_34
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We study an open text mining problem - discovering concept-level event associations from a text stream. We investigate the importance and challenge of this task and propose a novel solution by using event sequential patterns. The proposed approach can discover important event associations implicitly expressed. The discovered event associations are general and useful as knowledge for applications such as event prediction.
引用
收藏
页码:413 / 424
页数:12
相关论文
共 50 条
  • [21] Propagating and Aggregating Fuzzy Polarities for Concept-Level Sentiment Analysis
    Dragoni, Mauro
    Tettamanzi, Andrea G. B.
    Pereira, Celia da Costa
    COGNITIVE COMPUTATION, 2015, 7 (02) : 186 - 197
  • [22] Propagating and Aggregating Fuzzy Polarities for Concept-Level Sentiment Analysis
    Mauro Dragoni
    Andrea G. B. Tettamanzi
    Célia da Costa Pereira
    Cognitive Computation, 2015, 7 : 186 - 197
  • [23] Explaining Educational Recommendations through a Concept-Level Knowledge Visualization
    Barria-Pineda, Jordan
    Brusilovsky, Peter
    PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON INTELLIGENT USER INTERFACES: COMPANION (IUI 2019), 2019, : 103 - 104
  • [24] Building a Concept-Level Sentiment Dictionary Based on Commonsense Knowledge
    Tsai, Angela Charng-Rurng
    Wu, Chi-En
    Tsai, Richard Tzong-Han
    Hsu, Jane Yung-jen
    IEEE INTELLIGENT SYSTEMS, 2013, 28 (02) : 22 - 30
  • [25] The CLSA Model: A Novel Framework for Concept-Level Sentiment Analysis
    Cambria, Erik
    Poria, Soujanya
    Bisio, Federica
    Bajpai, Rajiv
    Chaturvedi, Iti
    COMPUTATIONAL LINGUISTICS AND INTELLIGENT TEXT PROCESSING (CICLING 2015), PT II, 2015, 9042 : 3 - 22
  • [26] CSenticNet: A Concept-Level Resource for Sentiment Analysis in Chinese Language
    Peng, Haiyun
    Cambria, Erik
    COMPUTATIONAL LINGUISTICS AND INTELLIGENT TEXT PROCESSING, CICLING 2017, PT II, 2018, 10762 : 90 - 104
  • [27] Concept-Level Causal Explanation Method for Brain Function Network Classification
    Liu, Jinduo
    Wang, Feipeng
    Ji, Junzhong
    PROCEEDINGS OF THE THIRTY-THIRD INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2024, 2024, : 3087 - 3096
  • [28] Knowledge-Based Approaches to Concept-Level Sentiment Analysis INTRODUCTION
    Cambria, Erik
    Schuller, Bjoern
    Liu, Bing
    Wang, Haixun
    Havasi, Catherine
    IEEE INTELLIGENT SYSTEMS, 2013, 28 (02) : 12 - 14
  • [29] AffectiveSpace 2: Enabling Affective Intuition for Concept-Level Sentiment Analysis
    Cambria, Erik
    Fu, Jie
    Bisio, Federica
    Poria, Soujanya
    PROCEEDINGS OF THE TWENTY-NINTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2015, : 508 - 514
  • [30] Multibody modeling for concept-level floating offshore wind turbine design
    Lemmer, Frank
    Yu, Wei
    Luhmann, Birger
    Schlipf, David
    Cheng, Po Wen
    MULTIBODY SYSTEM DYNAMICS, 2020, 49 (02) : 203 - 236