Discovering Concept-Level Event Associations from a Text Stream

被引:2
|
作者
Ge, Tao [1 ,2 ]
Cui, Lei [3 ]
Ji, Heng [4 ]
Chang, Baobao [1 ,2 ]
Sui, Zhifang [1 ,2 ]
机构
[1] Peking Univ, Key Lab Computat Linguist, Minist Educ, Sch EECS, Beijing, Peoples R China
[2] Collaborat Innovat Ctr Language Abil, Xuzhou, Peoples R China
[3] Microsoft Res, Beijing, Peoples R China
[4] Rensselaer Polytech Inst, Troy, NY USA
基金
中国国家自然科学基金;
关键词
D O I
10.1007/978-3-319-50496-4_34
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We study an open text mining problem - discovering concept-level event associations from a text stream. We investigate the importance and challenge of this task and propose a novel solution by using event sequential patterns. The proposed approach can discover important event associations implicitly expressed. The discovered event associations are general and useful as knowledge for applications such as event prediction.
引用
收藏
页码:413 / 424
页数:12
相关论文
共 50 条
  • [1] Dependency-Based Semantic Parsing for Concept-Level Text Analysis
    Poria, Soujanya
    Agarwal, Basant
    Gelbukh, Alexander
    Hussain, Amir
    Howard, Newton
    COMPUTATIONAL LINGUISTICS AND INTELLIGENT TEXT PROCESSING, CICLING 2014, PT I, 2014, 8403 : 113 - 127
  • [2] Leveraging multimodal information for event summarization and concept-level sentiment analysis
    Shah, Rajiv Ratn
    Yu, Yi
    Verma, Akshay
    Tang, Suhua
    Shaikh, Anwar Dilawar
    Zimmermann, Roger
    KNOWLEDGE-BASED SYSTEMS, 2016, 108 : 102 - 109
  • [3] Concept-Level Model Interpretation From the Causal Aspect
    Yao, Liuyi
    Li, Yaliang
    Li, Sheng
    Liu, Jinduo
    Huai, Mengdi
    Zhang, Aidong
    Gao, Jing
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (09) : 8799 - 8810
  • [4] S2CA: Shared Concept Prototypes and Concept-level Alignment for text-video retrieval
    Li, Yuxiao
    Xin, Yu
    Qian, Jiangbo
    Dong, Yihong
    NEUROCOMPUTING, 2025, 614
  • [5] Concept-level Rules for Capturing Domain Knowledge
    Moitra, Abha
    Crapo, Andrew
    Palla, Ravi
    2018 IEEE 12TH INTERNATIONAL CONFERENCE ON SEMANTIC COMPUTING (ICSC), 2018, : 260 - 264
  • [6] A Fuzzy System for Concept-Level Sentiment Analysis
    Dragoni, Mauro
    Tettamanzi, Andrea G. B.
    Pereira, Celia da Costa
    SEMANTIC WEB EVALUATION CHALLENGE, 2014, 475 : 21 - 27
  • [7] Detecting Concept-level Emotion Cause in Microblogging
    Song, Shuangyong
    Meng, Yao
    WWW'15 COMPANION: PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, 2015, : 119 - 120
  • [8] Concept-Level Design Analytics for Blended Courses
    Albo, Laia
    Barria-Pineda, Jordan
    Brusilovsky, Peter
    Hernandez-Leo, Davinia
    TRANSFORMING LEARNING WITH MEANINGFUL TECHNOLOGIES, EC-TEL 2019, 2019, 11722 : 541 - 554
  • [9] TEXTUAL/GRAPHICAL DESIGN CAPTURE FOR CONCEPT-LEVEL SYNTHESIS
    CYRE, WR
    COMPUTER HARDWARE DESCRIPTION LANGUAGES AND THEIR APPLICATIONS, 1993, 32 : 485 - 502
  • [10] ESWC'14 Challenge on Concept-Level Sentiment Analysis
    Recupero, Diego Reforgiato
    Cambria, Erik
    SEMANTIC WEB EVALUATION CHALLENGE, 2014, 475 : 3 - 20