On the superlinear problems involving p(x)-Laplacian-like operators without AR-condition

被引:34
|
作者
Zhou, Qing-Mei [1 ]
机构
[1] Northeast Forestry Univ, Harbin 150040, Peoples R China
基金
美国国家科学基金会;
关键词
p(x)-Laplacian-like; Nonlinear eigenvalue problem; Without the AR-condition; Variational method; Critical points; EXISTENCE; MULTIPLICITY;
D O I
10.1016/j.nonrwa.2014.07.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present paper, in view of the variational approach, we discuss the nonlinear eigen-value problems for p(x)-Laplacian-like operators, originated from a capillary phenomenon. Under some suitable conditions, we prove the existence of nontrivial solutions of the system for every parameter lambda > 0. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:161 / 169
页数:9
相关论文
共 50 条
  • [31] Existence Results for a Nonlocal Superlinear Problems Involving p(x)-Laplacian Near to Zero
    El Amrouss, Abdelrachid
    Ourraoui, Anass
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2022, 40
  • [32] Multiple Solutions for Problems Involving p(x)-Laplacian and p(x)-Biharmonic Operators
    Sahbani, Abdelhakim
    Ghanmi, Abdeljabbar
    Chammem, Rym
    JOURNAL OF MATHEMATICAL PHYSICS ANALYSIS GEOMETRY, 2024, 20 (02) : 235 - 249
  • [33] Existence of solutions for the double phase variational problems without AR-condition
    Yang, Jie
    Chen, Haibo
    Liu, Senli
    MANUSCRIPTA MATHEMATICA, 2021, 165 (3-4) : 505 - 519
  • [34] Infinitely Many Solutions for p(x)-Laplacian-Like Neumann Problems with Indefinite Weight
    Zhou Qing-Mei
    Wang Ke-Qi
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2019, 16 (03)
  • [35] Infinitely Many Solutions for p(x)-Laplacian-Like Neumann Problems with Indefinite Weight
    Zhou Qing-Mei
    Wang Ke-Qi
    Mediterranean Journal of Mathematics, 2019, 16
  • [36] Existence and Multiplicity of Solutions for a Steklov Eigenvalue Problem Involving The p(x)-Laplacian-like Operator
    Boukhsas, A.
    Karim, B.
    Zerouali, A.
    Chakrone, O.
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2024, 42
  • [37] Nonlinear boundary value problems involving the p-Laplacian and p-Laplacian-like operators
    Papageorgiou, EH
    Papageorgiou, NS
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2005, 24 (04): : 691 - 707
  • [38] Ambrosetti–Prodi Type Results for Dirichlet Problems of Fractional Laplacian-Like Operators
    Anup Biswas
    József Lőrinczi
    Integral Equations and Operator Theory, 2020, 92
  • [39] On Nonlocal p(x)-Laplacian Problems Involving No Flux Boundary Condition
    Ourraoui, Anass
    NOTE DI MATEMATICA, 2015, 35 (02): : 69 - 80
  • [40] Infinitely many solutions for problems involving p(x)-Laplacian and p(x)-biharmonic operators
    Sahbani, Abdelhakim
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2024, 69 (12) : 2138 - 2151