Ambrosetti–Prodi Type Results for Dirichlet Problems of Fractional Laplacian-Like Operators

被引:0
|
作者
Anup Biswas
József Lőrinczi
机构
[1] Indian Institute of Science Education and Research,Department of Mathematics
[2] Loughborough University,Department of Mathematical Sciences
来源
关键词
Semi-linear nonlocal exterior value problem; Ambrosetti–Prodi problem; Viscosity solutions; Bifurcations; Fractional Schrödinger operator; Principal eigenvalues; Maximum principles; 35J60; 35J55; 58J55;
D O I
暂无
中图分类号
学科分类号
摘要
We establish Ambrosetti–Prodi type results for viscosity and classical solutions of nonlinear Dirichlet problems for fractional Laplace and comparable operators. In the choice of nonlinearities we consider semi-linear and super-linear growth cases separately. We develop a new technique using a functional integration-based approach, which is more robust in the non-local context than a purely analytic treatment.
引用
收藏
相关论文
共 50 条
  • [1] Ambrosetti-Prodi Type Results for Dirichlet Problems of Fractional Laplacian-Like Operators
    Biswas, Anup
    Lorinczi, Jozsef
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2020, 92 (03)
  • [2] Sublinear and superlinear Ambrosetti-Prodi problems for the Dirichlet p-Laplacian
    Aizicovici, Sergiu
    Papageorgiou, Nikolaos S.
    Staicu, Vasile
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 95 : 263 - 280
  • [3] Critical Concave Convex Ambrosetti-Prodi Type Problems for Fractional p-Laplacian
    Bueno, H. P.
    Huerto Caqui, E.
    Miyagaki, O. H.
    Pereira, F. R.
    ADVANCED NONLINEAR STUDIES, 2020, 20 (04) : 847 - 865
  • [4] On the ground state of some fractional Laplacian-like operators
    Sobolev, Alexander V.
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2014, 46 : 809 - 817
  • [5] An Ambrosetti-Prodi type result for fractional spectral problems
    Ambrosio, Vincenzo
    MATHEMATISCHE NACHRICHTEN, 2020, 293 (03) : 412 - 429
  • [6] Ambrosetti-Prodi problems for the Robin (p, q)-Laplacian
    Papageorgiou, Nikolaos S.
    Radulescu, Vicentiu D.
    Zhang, Jian
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2022, 67
  • [7] Results of Ambrosetti-Prodi type for non-selfadjoint elliptic operators
    Sirakov, Boyan
    Tomei, Carlos
    Zaccur, Andre
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2018, 35 (07): : 1757 - 1772
  • [8] On periodic Ambrosetti-Prodi-type problems
    Minhos, Feliz
    Oliveira, Nuno
    AIMS MATHEMATICS, 2023, 8 (06): : 12986 - 12999
  • [9] A fractional Ambrosetti-Prodi type problem in RN
    de Lima, Romildo N.
    Torres Ledesma, Cesar E.
    Nobrega, Alannio B.
    JOURNAL OF ELLIPTIC AND PARABOLIC EQUATIONS, 2023, 9 (01) : 355 - 387
  • [10] AMBROSETTI-PRODI TYPE RESULTS IN NONLINEAR BOUNDARY-VALUE PROBLEMS
    MAWHIN, J
    LECTURE NOTES IN MATHEMATICS, 1987, 1285 : 290 - 313