Semi-linear nonlocal exterior value problem;
Ambrosetti–Prodi problem;
Viscosity solutions;
Bifurcations;
Fractional Schrödinger operator;
Principal eigenvalues;
Maximum principles;
35J60;
35J55;
58J55;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We establish Ambrosetti–Prodi type results for viscosity and classical solutions of nonlinear Dirichlet problems for fractional Laplace and comparable operators. In the choice of nonlinearities we consider semi-linear and super-linear growth cases separately. We develop a new technique using a functional integration-based approach, which is more robust in the non-local context than a purely analytic treatment.
机构:
Pontificia Univ Catolica Rio de Janeiro, Dept Matemat, Rua Marques Sao Vicente 225, BR-22451900 Rio de Janeiro, RJ, BrazilPontificia Univ Catolica Rio de Janeiro, Dept Matemat, Rua Marques Sao Vicente 225, BR-22451900 Rio de Janeiro, RJ, Brazil
Sirakov, Boyan
Tomei, Carlos
论文数: 0引用数: 0
h-index: 0
机构:
Pontificia Univ Catolica Rio de Janeiro, Dept Matemat, Rua Marques Sao Vicente 225, BR-22451900 Rio de Janeiro, RJ, BrazilPontificia Univ Catolica Rio de Janeiro, Dept Matemat, Rua Marques Sao Vicente 225, BR-22451900 Rio de Janeiro, RJ, Brazil
Tomei, Carlos
Zaccur, Andre
论文数: 0引用数: 0
h-index: 0
机构:
Pontificia Univ Catolica Rio de Janeiro, Dept Matemat, Rua Marques Sao Vicente 225, BR-22451900 Rio de Janeiro, RJ, BrazilPontificia Univ Catolica Rio de Janeiro, Dept Matemat, Rua Marques Sao Vicente 225, BR-22451900 Rio de Janeiro, RJ, Brazil
Zaccur, Andre
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE,
2018,
35
(07):
: 1757
-
1772
机构:
Univ Nacl Trujillo, Fac Ciencias Fis & Matemat, Inst Invest Matemat, Av Juan Pablo II S-N, Trujillo, PeruUniv Fed Campina Grande, Unidade Acad Matemat, BR-58429970 Campina Grande, Paraiba, Brazil