Transition from an atomic to a molecular Bose-Einstein condensate

被引:39
|
作者
Zhang, Zhendong [1 ,2 ]
Chen, Liangchao [3 ]
Yao, Kai-Xuan [1 ,2 ]
Chin, Cheng [1 ,2 ]
机构
[1] Univ Chicago, James Franck Inst, Enrico Fermi Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA
[2] Univ Chicago, Dept Phys, Chicago, IL 60637 USA
[3] Shanxi Univ, Inst Optoelect, State Key Lab Quantum Opt & Quantum Opt Devices, Taiyuan, Peoples R China
基金
美国国家科学基金会;
关键词
D O I
10.1038/s41586-021-03443-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Molecular quantum gases (that is, ultracold and dense molecular gases) have many potential applications, including quantum control of chemical reactions, precision measurements, quantum simulation and quantum information processing(1-3). For molecules, to reach the quantum regime usually requires efficient cooling at high densities, which is frequently hindered by fast inelastic collisions that heat and deplete the population of molecules(4,5). Here we report the preparation of two-dimensional Bose-Einstein condensates (BECs) of spinning molecules by inducing pairing interactions in an atomic condensate near a g-wave Feshbach resonance(6). The trap geometry and the low temperature of the molecules help to reduce inelastic loss, ensuring thermal equilibrium. From the equation-of-state measurement, we determine the molecular scattering length to be + 220(+/- 30) Bohr radii (95% confidence interval). We also investigate the unpairing dynamics in the strong coupling regime and find that near the Feshbach resonance the dynamical timescale is consistent with the unitarity limit. Our work demonstrates the long-sought transition between atomic and molecular condensates, the bosonic analogue of the crossover from a BEC to a Bardeen-Cooper-Schrieffer (BCS) superfluid in a Fermi gas(7-9). In addition, our experiment may shed light on condensed pairs with orbital angular momentum, where a novel anisotropic superfluid with non-zero surface current is predicted(10,11), such as the A phase of He-3. A Bose-Einstein condensate of molecules is produced by pairing atoms in an atomic condensate; this transition is the bosonic analog of the Bardeen-Cooper-Schrieffer superfluid to BEC crossover in Fermi gases.
引用
收藏
页码:708 / +
页数:12
相关论文
共 50 条
  • [41] Chaos in a Bose-Einstein condensate
    王志霞
    倪政国
    从福仲
    刘学深
    陈蕾
    Chinese Physics B, 2010, 19 (11) : 294 - 297
  • [42] Bose-Einstein condensate strings
    Harko, Tiberiu
    Lake, Matthew J.
    PHYSICAL REVIEW D, 2015, 91 (04):
  • [43] Nonclassical Bose-Einstein condensate
    Zeng, HP
    Lin, FC
    CHINESE PHYSICS LETTERS, 1995, 12 (10) : 593 - 596
  • [44] Bose-Einstein condensate in a box
    Meyrath, TP
    Schreck, F
    Hanssen, JL
    Chuu, CS
    Raizen, MG
    PHYSICAL REVIEW A, 2005, 71 (04):
  • [45] Bose-Einstein condensate on a chip
    Anon
    Industrial Physicist, 2002, 8 (01):
  • [46] Molecules in a Bose-Einstein condensate
    Wynar, R
    Freeland, RS
    Han, DJ
    Ryu, C
    Heinzen, DJ
    SCIENCE, 2000, 287 (5455) : 1016 - 1019
  • [47] Bose-Einstein Condensate Comagnetometer
    Gomez P.
    Martin F.
    Mazzinghi C.
    Benedicto Orenes D.
    Palacios S.
    Mitchell M.W.
    1600, American Physical Society (124):
  • [48] A Bose-Einstein condensate in an atom
    Smart, Ashley G.
    PHYSICS TODAY, 2018, 71 (07) : 16 - 17
  • [49] On stability of spatially periodic structures of an atomic Bose-Einstein condensate
    Rozanov, N. N.
    OPTICS AND SPECTROSCOPY, 2006, 101 (03) : 410 - 412
  • [50] Photon antibunching upon scattering by an atomic Bose-Einstein condensate
    Ilichev, L. V.
    Chapovsky, P. L.
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2010, 110 (05) : 737 - 741