Transition from an atomic to a molecular Bose-Einstein condensate

被引:39
|
作者
Zhang, Zhendong [1 ,2 ]
Chen, Liangchao [3 ]
Yao, Kai-Xuan [1 ,2 ]
Chin, Cheng [1 ,2 ]
机构
[1] Univ Chicago, James Franck Inst, Enrico Fermi Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA
[2] Univ Chicago, Dept Phys, Chicago, IL 60637 USA
[3] Shanxi Univ, Inst Optoelect, State Key Lab Quantum Opt & Quantum Opt Devices, Taiyuan, Peoples R China
基金
美国国家科学基金会;
关键词
D O I
10.1038/s41586-021-03443-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Molecular quantum gases (that is, ultracold and dense molecular gases) have many potential applications, including quantum control of chemical reactions, precision measurements, quantum simulation and quantum information processing(1-3). For molecules, to reach the quantum regime usually requires efficient cooling at high densities, which is frequently hindered by fast inelastic collisions that heat and deplete the population of molecules(4,5). Here we report the preparation of two-dimensional Bose-Einstein condensates (BECs) of spinning molecules by inducing pairing interactions in an atomic condensate near a g-wave Feshbach resonance(6). The trap geometry and the low temperature of the molecules help to reduce inelastic loss, ensuring thermal equilibrium. From the equation-of-state measurement, we determine the molecular scattering length to be + 220(+/- 30) Bohr radii (95% confidence interval). We also investigate the unpairing dynamics in the strong coupling regime and find that near the Feshbach resonance the dynamical timescale is consistent with the unitarity limit. Our work demonstrates the long-sought transition between atomic and molecular condensates, the bosonic analogue of the crossover from a BEC to a Bardeen-Cooper-Schrieffer (BCS) superfluid in a Fermi gas(7-9). In addition, our experiment may shed light on condensed pairs with orbital angular momentum, where a novel anisotropic superfluid with non-zero surface current is predicted(10,11), such as the A phase of He-3. A Bose-Einstein condensate of molecules is produced by pairing atoms in an atomic condensate; this transition is the bosonic analog of the Bardeen-Cooper-Schrieffer superfluid to BEC crossover in Fermi gases.
引用
收藏
页码:708 / +
页数:12
相关论文
共 50 条
  • [31] Dynamics of Stimulated Atomic-Molecular Raman Conversion in a Bose-Einstein Condensate
    Khadzhi, P. I.
    Tkachenko, D. V.
    JOURNAL OF NANOELECTRONICS AND OPTOELECTRONICS, 2009, 4 (01) : 101 - 117
  • [32] Comment on "Stimulated Raman adiabatic passage from an atomic to a molecular Bose-Einstein condensate" - Reply
    Drummond, PD
    Kheruntsyan, KV
    Heinzen, DJ
    Wynar, RH
    PHYSICAL REVIEW A, 2005, 71 (01):
  • [33] Controllable Majorana transition in spinor Bose-Einstein condensate
    Chen, Xuzong
    Xia, Lin
    Xu, Xu
    Yang, Fan
    Xiong, Wei
    Li, Juntao
    Ma, Qianli
    Yi, Lin
    Zhou, Xiaoji
    Guo, Hong
    2007 PACIFIC RIM CONFERENCE ON LASERS AND ELECTRO-OPTICS, VOLS 1-4, 2007, : 927 - 928
  • [34] Phase transition of Bose-Einstein condensate under decoherence
    Zheng Qiang
    Yi Shan-Feng
    Hu Chang-Gang
    CHINESE PHYSICS B, 2014, 23 (02)
  • [35] Turbulence in a Bose-Einstein condensate
    Eroshenko, Yu N.
    PHYSICS-USPEKHI, 2023, 66 (05) : 541 - 541
  • [36] A Bose-Einstein condensate in a microtrap
    Kasper, A
    Schneider, S
    vom Hagen, C
    Bartenstein, M
    Engeser, B
    Schumm, T
    Bar-Joseph, I
    Folman, R
    Feenstra, L
    Schmiedmayer, J
    JOURNAL OF OPTICS B-QUANTUM AND SEMICLASSICAL OPTICS, 2003, 5 (02) : S143 - S149
  • [38] Stirring a Bose-Einstein condensate
    Damski, B
    Sacha, K
    Zakrzewski, J
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2002, 35 (19) : 4051 - 4057
  • [39] Fluctuations of Bose-Einstein condensate
    Gajda, M
    Rzazewski, K
    PHYSICAL REVIEW LETTERS, 1997, 78 (14) : 2686 - 2689
  • [40] Confinement controlled dissociation of a molecular Bose-Einstein condensate
    Tikhonenkov, I.
    Vardi, A.
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2007, 40 (11) : S299 - S313