Photocatalytic non-oxidative coupling of methane: Recent progress and future

被引:28
|
作者
Wu, Shiqun [1 ,2 ]
Wang, Lingzhi [1 ,2 ]
Zhang, Jinlong [1 ,2 ,3 ]
机构
[1] East China Univ Sci & Technol, Sch Chem & Mol Engn, Frontiers Sci Ctr Materiobiol & Dynam Chem, Feringa Nobel Prize Scientist Joint Res Ctr,Key L, 130 Meilong Rd, Shanghai 200237, Peoples R China
[2] East China Univ Sci & Technol, Sch Chem & Mol Engn, Frontiers Sci Ctr Materiobiol & Dynam Chem, Feringa Nobel Prize Scientist Joint Res Ctr,Joint, 130 Meilong Rd, Shanghai 200237, Peoples R China
[3] Yancheng Inst Technol, Sch Chem & Chem Engn, Yancheng 224051, Peoples R China
基金
中国国家自然科学基金;
关键词
Photocatalysis; Non-oxidative coupling of methane; Methane activation; Noble metal; SILICA-ALUMINA; ACTIVE-SITES; PHOTOACTIVE SITES; CARBON-DIOXIDE; GALLIUM OXIDE; CONVERSION; FUELS; CHALLENGE; REDUCTION; ETHANE;
D O I
10.1016/j.jphotochemrev.2020.100400
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The importance of effectively converting methane to hydrogen and high value-added hydrocarbons chemicals is becoming more significant due to the huge resources of methane and increasing demands for chemicals. However, it is hard to convert methane into more useful hydrocarbons and hydrogen due to the enormous thermodynamic barrier, which often needs high energy and often results in catalyst deactivation and unsatisfactory product selectivity. Recently, a growing number of researches focusing on photocatalytic methane conversion under mild conditions have attracted much attention, demonstrating that photocatalytic non-oxidative coupling of methane (PNOCM) is a prospective and green method for methane conversion under mild conditions. Herein, we provide a review of the recent advance, remaining challenges, and prospects in PNOCM. Moreover, this review provides considerable guidance for rational design of efficient and stable photocatalysts towards PNOCM by theory predictions and experiment results. We hope this review can attract more attention to the important research field of energy conversion. (c) 2020 Elsevier B.V. All rights reserved. 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.1. Importance of methane conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2. Challenge in methane conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3. NOCM reaction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 2. Photocatalytic NOCM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2.1. Non-noble-metal photocatalysts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1.1. Silica-based catalysts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1.2. Metal oxide-based catalysts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.3. Zeolite-based catalysts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Lithium Promotes Acetylide Formation on MgO During Methane Coupling Under Non-Oxidative Conditions
    Zhang, Seraphine B. X. Y.
    Pessemesse, Quentin
    Berkson, Zachariah J.
    Van Bavel, Alexander P.
    Horton, Andrew D.
    Payard, Pierre-Adrien
    Coperet, Christophe
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (38)
  • [32] Non-oxidative coupling reaction of methane to hydrogen and ethene via plasma-catalysis process
    Zhou, Mingchuan
    Yang, Zhe
    Ren, Junpeng
    Zhang, Tie
    Xu, Wei
    Zhang, Jing
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (01) : 78 - 89
  • [33] Photoinduced non-oxidative coupling of methane over H-zeolites around room temperature
    Kato, Y
    Yoshida, H
    Satsuma, A
    Hattori, T
    MICROPOROUS AND MESOPOROUS MATERIALS, 2002, 51 (03) : 223 - 231
  • [34] Effects of dielectric particles on non-oxidative coupling of methane in a dielectric barrier discharge plasma reactor
    Kim, Juchan
    Jeoung, Jaekwon
    Jeon, Jonghyun
    Kim, Jip
    Mok, Young Sun
    Ha, Kyoung-Su
    CHEMICAL ENGINEERING JOURNAL, 2019, 377
  • [35] Non-Oxidative Coupling of Methane Catalyzed by Heterogeneous Catalysts Containing Singly Dispersed Metal Sites
    Li, Yuting
    Zhang, Jie
    CATALYSTS, 2024, 14 (06)
  • [36] Hybrid plasma catalysis-thermal system for non-oxidative coupling of methane to ethylene and hydrogen
    Liu, Rui
    Morais, Eduardo
    Li, Dongxing
    Liu, Pengfei
    Chen, Qian
    Li, Shangkun
    Wang, Li
    Gao, Xiaoxia
    Bogaerts, Annemie
    Guo, Hongchen
    Yi, Yanhui
    CHEMICAL ENGINEERING JOURNAL, 2024, 498
  • [37] Highly active silica-alumina-titania catalyst for photoinduced non-oxidative methane coupling
    Kato, Y
    Matsushita, N
    Yoshida, H
    Hattori, T
    CATALYSIS COMMUNICATIONS, 2002, 3 (03) : 99 - 103
  • [38] Mechanistic and microkinetic study of non-oxidative methane coupling on a single-atom iron catalyst
    Kim, Seok Ki
    Kim, Hyun Woo
    Han, Seung Ju
    Lee, Sung Woo
    Shin, Jungho
    Kim, Yong Tae
    COMMUNICATIONS CHEMISTRY, 2020, 3 (01)
  • [39] RECENT ADVANCES IN THE OXIDATIVE COUPLING OF METHANE
    LUNSFORD, JH
    NATURAL GAS CONVERSION II, 1994, 81 : 1 - 12
  • [40] High photocatalytic yield in the non-oxidative coupling of methane using a Pd-TiO2 nanomembrane gas flow-through reactor
    Longo, Victor
    De Pasquale, Luana
    Tavella, Francesco
    Barawi, Mariam
    Gomez-Mendoza, Miguel
    O'Shea, Victor de la Pena
    Ampelli, Claudio
    Perathoner, Siglinda
    Centi, Gabriele
    Genovese, Chiara
    EES CATALYSIS, 2024, 2 (05): : 1164 - 1175