Photocatalytic non-oxidative coupling of methane: Recent progress and future

被引:28
|
作者
Wu, Shiqun [1 ,2 ]
Wang, Lingzhi [1 ,2 ]
Zhang, Jinlong [1 ,2 ,3 ]
机构
[1] East China Univ Sci & Technol, Sch Chem & Mol Engn, Frontiers Sci Ctr Materiobiol & Dynam Chem, Feringa Nobel Prize Scientist Joint Res Ctr,Key L, 130 Meilong Rd, Shanghai 200237, Peoples R China
[2] East China Univ Sci & Technol, Sch Chem & Mol Engn, Frontiers Sci Ctr Materiobiol & Dynam Chem, Feringa Nobel Prize Scientist Joint Res Ctr,Joint, 130 Meilong Rd, Shanghai 200237, Peoples R China
[3] Yancheng Inst Technol, Sch Chem & Chem Engn, Yancheng 224051, Peoples R China
基金
中国国家自然科学基金;
关键词
Photocatalysis; Non-oxidative coupling of methane; Methane activation; Noble metal; SILICA-ALUMINA; ACTIVE-SITES; PHOTOACTIVE SITES; CARBON-DIOXIDE; GALLIUM OXIDE; CONVERSION; FUELS; CHALLENGE; REDUCTION; ETHANE;
D O I
10.1016/j.jphotochemrev.2020.100400
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The importance of effectively converting methane to hydrogen and high value-added hydrocarbons chemicals is becoming more significant due to the huge resources of methane and increasing demands for chemicals. However, it is hard to convert methane into more useful hydrocarbons and hydrogen due to the enormous thermodynamic barrier, which often needs high energy and often results in catalyst deactivation and unsatisfactory product selectivity. Recently, a growing number of researches focusing on photocatalytic methane conversion under mild conditions have attracted much attention, demonstrating that photocatalytic non-oxidative coupling of methane (PNOCM) is a prospective and green method for methane conversion under mild conditions. Herein, we provide a review of the recent advance, remaining challenges, and prospects in PNOCM. Moreover, this review provides considerable guidance for rational design of efficient and stable photocatalysts towards PNOCM by theory predictions and experiment results. We hope this review can attract more attention to the important research field of energy conversion. (c) 2020 Elsevier B.V. All rights reserved. 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.1. Importance of methane conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2. Challenge in methane conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3. NOCM reaction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 2. Photocatalytic NOCM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2.1. Non-noble-metal photocatalysts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1.1. Silica-based catalysts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1.2. Metal oxide-based catalysts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.3. Zeolite-based catalysts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Direct non-oxidative methane coupling on vitreous silica supported iron catalysts
    Liu, Zixiao
    Cheng, Sichao
    Schulman, Emily
    Chen, Weiqi
    Vlachos, Dionisios G.
    Shu, Yuying
    Tran, Dat T.
    Liu, Dongxia
    CATALYSIS TODAY, 2023, 416
  • [22] Non-oxidative methane coupling over Co-Pt/NaY bimetallic catalysts
    Guczi, L
    Sarma, KV
    Borko, L
    CATALYSIS LETTERS, 1996, 39 (1-2) : 43 - 47
  • [23] Optimization of plasma-thermal system for non-oxidative coupling of methane to ethylene and hydrogen
    Liu, Rui
    Li, Dongxing
    Chen, Qian
    Gong, Zhiwei
    Wang, Li
    Guo, Hongchen
    Yi, Yanhui
    APPLIED ENERGY, 2025, 383
  • [24] The hybrid plasma-catalytic process for non-oxidative methane coupling to ethylene and ethane
    Mlotek, M.
    Sentek, J.
    Krawczyk, K.
    Schmidt-Szalowski, K.
    APPLIED CATALYSIS A-GENERAL, 2009, 366 (02) : 232 - 241
  • [25] In Situ Formation of Ru-Sn Bimetallic Particles for Non-Oxidative Coupling of Methane
    Motokura, Ken
    Mizuno, Ayaka
    Hasegawa, Shingo
    Nambo, Masayuki
    Takabatake, Moe
    Suzuki, Kenta
    Manaka, Yuichi
    Uemura, Yohei
    Tsubaki, Shuntaro
    Chun, Wang-Jae
    JOURNAL OF PHYSICAL CHEMISTRY C, 2023, 127 (31): : 15185 - 15194
  • [26] Non-oxidative methane coupling to C2 hydrocarbons in a microwave plasma reactor
    Minea, Teofil
    van den Bekerom, Dirk C. M.
    Peeters, Floran J. J.
    Zoethout, Erwin
    Graswinckel, Martijn F.
    van de Sanden, Mauritius C. M.
    Cents, Toine
    Lefferts, Leon
    van Rooij, Gerard J.
    PLASMA PROCESSES AND POLYMERS, 2018, 15 (11)
  • [27] Photo-Driven Iron-Induced Non-Oxidative Coupling of Methane to Ethane
    Zhang, Huizhen
    Zhong, Wanfu
    Gong, Qiaobin
    Sun, Pengfei
    Fei, Xiaozhen
    Wu, Xuejiao
    Xu, Sha
    Zhang, Qinghong
    Fu, Gang
    Xie, Shunji
    Wang, Ye
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (25)
  • [28] OXIDATIVE COUPLING OF METHANE - A PROGRESS REPORT
    BHASIN, MM
    CAMPBELL, KD
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1994, 207 : 25 - CATL
  • [29] Non-oxidative methane conversion assisted by corona discharge
    Redondo, A. Beloqui
    Troussard, E.
    van Bokhoven, J. A.
    FUEL PROCESSING TECHNOLOGY, 2012, 104 : 265 - 270
  • [30] Mechanistic and microkinetic study of non-oxidative methane coupling on a single-atom iron catalyst
    Seok Ki Kim
    Hyun Woo Kim
    Seung Ju Han
    Sung Woo Lee
    Jungho Shin
    Yong Tae Kim
    Communications Chemistry, 3