Background: Smartphones are increasingly recognized as the future technology for clinical gait assessment. Research Question: To determine the concurrent validity of gait parameters obtained using the smartphone technology and application in a group of patients with musculoskeletal pathologies. Methods: Patients with knee, lower back, hip, or ankle pain were included in the study (n = 72). Spatiotemporal outcomes were derived from the walkway and the smartphone simultaneously. Pearson's correlations and limits of agreement (LoA) determined the association between the two methods. Results: Cadence and gait cycle time showed excellent correlation and agreement between the smartphone and the walkway (cadence: r = 0.997, LoA=1.4%, gait cycle time: r = 0.996, LoA = 1.6%). Gait speed, double-limb support and left and right step length demonstrated strong correlations and moderate agreement between methods (gait speed: r = 0.914, LoA=15.4%, left step length: r = 0.842, LoA = 17.0%, right step length: r = 0.800, LoA=16.4%). The left and right measures of single-limb support and stance percent showed a consistent 4% bias across instruments, yielding moderate correlation and very good agreement between the smartphone and the walkway (r = 0.532, LoA = 9% and r = 0.460, LoA=9.8% for left and right single-limb support; r = 0.463, LoA = 5.1% and r = 0.533, LoA = 4.4% for left and right stance). Significance: The examined application appears to be a valid tool for gait analysis, providing clinically significant metrics for the assessment of patients with musculoskeletal pathologies. However, additional studies should examine the technology amongst patients with severe gait abnormalities.