On the Laplacian integral tricyclic graphs

被引:8
|
作者
Huang, Xueyi [1 ]
Huang, Qiongxiang [1 ]
Wen, Fei [1 ]
机构
[1] Xinjiang Univ, Coll Math & Syst Sci, Urumqi, Peoples R China
来源
LINEAR & MULTILINEAR ALGEBRA | 2015年 / 63卷 / 07期
关键词
tricyclic graph; Laplacian integral graph; algebraic connectivity; 05C50; R-PARTITE GRAPHS; ALGEBRAIC CONNECTIVITY; EIGENVALUES; MATRICES; SPECTRUM;
D O I
10.1080/03081087.2014.936436
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A graph is called Laplacian integral if all its Laplacian eigenvalues are integers. In this paper, we give an edge subdividing theorem for Laplacian eigenvalues of a graph (Theorem 2.1) and characterize a class of k-cyclic graphs whose algebraic connectivity is less than one. Using these results, we determine all the Laplacian integral tricyclic graphs. Furthermore, we show that all the Laplacian integral tricyclic graphs are determined by their Laplacian spectra.
引用
收藏
页码:1356 / 1371
页数:16
相关论文
共 50 条
  • [41] Laplacian borderenergetic graphs
    Hakimi-Nezhaad, Mardjan
    Ghorbani, Modjtaba
    JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, 2019, 40 (06): : 1237 - 1264
  • [42] On the Laplacian spectrum of (α, ω)-graphs
    Kelmans, A
    EUROPEAN JOURNAL OF COMBINATORICS, 2002, 23 (06) : 673 - 682
  • [43] On the Laplacian spectra of graphs
    Zhang, XD
    ARS COMBINATORIA, 2004, 72 : 191 - 198
  • [44] The Laplacian spread of graphs
    Zhifu You
    Bolian Liu
    Czechoslovak Mathematical Journal, 2012, 62 : 155 - 168
  • [45] LAPLACIAN MATRICES OF GRAPHS
    MOHAR, B
    MATH/CHEM/COMP 1988, 1989, 63 : 1 - 8
  • [46] Laplacian and Normalized Laplacian Spectral Distances of Graphs
    Hakimi-Nezhaad, Mardjan
    Ashrafi, Ali Reza
    SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2013, 37 (05) : 731 - 744
  • [47] On the Laplacian spread of graphs
    Zhai, Mingqing
    Shu, Jinlong
    Hong, Yuan
    APPLIED MATHEMATICS LETTERS, 2011, 24 (12) : 2097 - 2101
  • [48] Laplacian Eigenmaps of Graphs
    Wang Tianfei
    Yang Jin
    Li Bin
    PROCEEDINGS OF THE FOURTH INTERNATIONAL CONFERENCE OF MODELLING AND SIMULATION (ICMS2011), VOL 1, 2011, : 247 - 250
  • [49] On Laplacian energy of graphs
    Zhou, Bo
    Gutman, Ivan
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2007, 57 (01) : 211 - 220
  • [50] On Laplacian energy of graphs
    Das, Kinkar Ch.
    Mojallal, Seyed Ahmad
    DISCRETE MATHEMATICS, 2014, 325 : 52 - 64