On the Laplacian integral tricyclic graphs

被引:8
|
作者
Huang, Xueyi [1 ]
Huang, Qiongxiang [1 ]
Wen, Fei [1 ]
机构
[1] Xinjiang Univ, Coll Math & Syst Sci, Urumqi, Peoples R China
来源
LINEAR & MULTILINEAR ALGEBRA | 2015年 / 63卷 / 07期
关键词
tricyclic graph; Laplacian integral graph; algebraic connectivity; 05C50; R-PARTITE GRAPHS; ALGEBRAIC CONNECTIVITY; EIGENVALUES; MATRICES; SPECTRUM;
D O I
10.1080/03081087.2014.936436
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A graph is called Laplacian integral if all its Laplacian eigenvalues are integers. In this paper, we give an edge subdividing theorem for Laplacian eigenvalues of a graph (Theorem 2.1) and characterize a class of k-cyclic graphs whose algebraic connectivity is less than one. Using these results, we determine all the Laplacian integral tricyclic graphs. Furthermore, we show that all the Laplacian integral tricyclic graphs are determined by their Laplacian spectra.
引用
收藏
页码:1356 / 1371
页数:16
相关论文
共 50 条
  • [31] The Signless Laplacian Spectral Radius of Tricyclic Graphs with k Pendant Vertices
    Jingming ZHANG1
    2.College of Mathematics and Computational Science
    Journal of Mathematical Research with Applications, 2012, (03) : 281 - 287
  • [32] Completion of Laplacian integral graphs via edge addition
    Kirkland, S
    DISCRETE MATHEMATICS, 2005, 295 (1-3) : 75 - 90
  • [33] Split non-threshold Laplacian integral graphs
    Kirkland, Stephen
    Alvarez de Freitas, Maria Aguieiras
    del Vecchio, Renata Raposo
    Maia de Abreu, Nair Maria
    LINEAR & MULTILINEAR ALGEBRA, 2010, 58 (02): : 221 - 233
  • [34] On integer matrices with integer eigenvalues and Laplacian integral graphs
    Barik, Sasmita
    Behera, Subhasish
    DISCRETE MATHEMATICS, 2024, 347 (01)
  • [35] The Laplacian spectral radius of tricyclic graphs with n vertices and k pendant vertices
    Guo, Shu-Guang
    Wang, Yan-Feng
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 431 (1-2) : 139 - 147
  • [36] The signless Laplacian spectral radius of tricyclic graphs and trees with k pendant vertices
    Li, Ke
    Wang, Ligong
    Zhao, Guopeng
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 435 (04) : 811 - 822
  • [37] On the spectra of tricyclic graphs
    Liu, Ruifang
    Jia, Huicai
    Shu, Jinlong
    ARS COMBINATORIA, 2011, 100 : 19 - 32
  • [38] On the nullity of tricyclic graphs
    Cheng, Bo
    Liu, Bolian
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 434 (08) : 1799 - 1810
  • [39] (Laplacian) Borderenergetic Graphs and Bipartite Graphs
    Deng, Bo
    Li, Xueliang
    Zhao, Haixing
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2019, 82 (02) : 481 - 489
  • [40] Golden Laplacian Graphs
    Akhter, Sadia
    Frasca, Mattia
    Estrada, Ernesto
    MATHEMATICS, 2024, 12 (04)