0.25μm radiation tolerant CMOS technology

被引:0
|
作者
Roedde, K [1 ]
机构
[1] Atmel Nantes SA, F-44306 Nantes 3, France
关键词
D O I
暂无
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
The MOS devices of the standard 0.25mum CMOS technology have been characterized for their immunity against ionizing radiation. While the shift of the threshold voltage is acceptable for total doses in the range of several KGy, the leakage of irradiated NMOST needed to be improved through process modification. Additional processing steps to optimize the lateral isolation of the transistors yielded devices with total dose immunity up to 4KGy. No special layout rules for the transistors are required which eliminates the need for a radiation tolerant specific design library and makes the radiation tolerant technology mask compatible with the standard process.
引用
收藏
页码:31 / 33
页数:3
相关论文
共 50 条
  • [21] SHALLOW P(+)-JUNCTION TECHNOLOGY FOR 0.25-MU-M CMOS
    POMP, H
    WOERLEE, PH
    WALKER, AJ
    MICROELECTRONIC ENGINEERING, 1992, 19 (1-4) : 25 - 30
  • [22] Reliability behaviour of a radiation tolerant 0.6 um CMOS technology
    Courrege, JC
    Venturin, JL
    Bezerra, F
    DAlberto, S
    EECC'97 - PROCEEDINGS OF THE THIRD ESA ELECTRONIC COMPONENTS CONFERENCE, 1997, 395 : 311 - 316
  • [23] A versatile 0.25 micron CMOS technology
    Poon, S
    Atwell, C
    Hart, C
    Kolar, D
    Lage, C
    Yeargain, B
    INTERNATIONAL ELECTRON DEVICES MEETING 1998 - TECHNICAL DIGEST, 1998, : 751 - 754
  • [24] A HIGH-PERFORMANCE 0.25-MU-M CMOS TECHNOLOGY .2. TECHNOLOGY
    DAVARI, B
    CHANG, WH
    PETRILLO, KE
    WONG, CY
    MOY, D
    TAUR, Y
    WORDEMAN, MR
    SUN, JYC
    HSU, CCH
    POLCARI, MR
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 1992, 39 (04) : 967 - 975
  • [25] Single event effects in static and dynamic registers in a 0.25μm CMOS technology
    Faccio, F
    Kloukinas, K
    Marchioro, A
    Calin, T
    Cosculluela, J
    Nicolaidis, M
    Velazco, R
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 1999, 46 (06) : 1434 - 1439
  • [26] A merged 2.5 V and 3.3 V 0.25-μm CMOS technology
    Kizilyalli, IC
    Huang, R
    Hwang, D
    Kane, B
    Ashton, R
    Kuehne, S
    Deng, X
    Twifford, M
    Martin, E
    Shuttleworth, D
    Wittingham, K
    Lytle, S
    Roy, P
    Olmer, L
    Vaidya, H
    Li, F
    Li, X
    Persson, E
    Massengale, A
    Stirling, L
    Chesire, D
    Steiner, K
    Barba, R
    Thoma, MJ
    Cochran, WT
    MICROELECTRONIC DEVICE TECHNOLOGY II, 1998, 3506 : 175 - 181
  • [27] A monolithic active pixel sensor for particle detection in 0.25 μm CMOS technology
    Velthuis, JJ
    Allport, PP
    Casse, G
    Evans, A
    Turchetta, R
    Villani, G
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2006, 560 (01): : 40 - 43
  • [28] A 0.25 μm CMOS SOI technology and its application to 4 Mb SRAM
    Schepis, DJ
    Assaderaghi, F
    Yee, DS
    Rausch, W
    Bolam, RJ
    Ajmera, AC
    Leobandung, E
    Kulkarni, SB
    Flaker, R
    Sadana, D
    Hovel, HJ
    Kebede, T
    Schiller, C
    Wu, S
    Wagner, LF
    Saccamango, MJ
    Ratanaphanyarat, S
    Kuang, JB
    Hsieh, MC
    Tallman, KA
    Martino, RM
    Fitzpatrick, D
    Badami, DA
    Hakey, M
    Chu, SF
    Davari, B
    Shahidi, GG
    INTERNATIONAL ELECTRON DEVICES MEETING - 1997, TECHNICAL DIGEST, 1997, : 587 - 590
  • [29] A digital receiver architecture for bluetooth in 0.25-μm CMOS technology and beyond
    Neubauer, Andre
    Hammes, Markus
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2007, 54 (09) : 2044 - 2053
  • [30] Copper dual damascene wiring for sub-0.25μm CMOS technology
    Heidenreich, J
    Edelstein, D
    Goldblatt, R
    Cote, W
    Uzoh, C
    Lustig, N
    McDevitt, T
    Stamper, A
    Simon, A
    Dukovic, J
    Andricacos, P
    Wachnik, R
    Rathore, H
    Katsetos, T
    McLaughlin, P
    Luce, S
    Slattery, J
    PROCEEDINGS OF THE IEEE 1998 INTERNATIONAL INTERCONNECT TECHNOLOGY CONFERENCE, 1998, : 151 - 153