Shape preservation regions for six-dimensional spaces

被引:12
|
作者
Carnicer, J. M.
Mainar, E.
Pena, J. M.
机构
[1] Univ Zaragoza, Dept Matemat Aplicada, E-50009 Zaragoza, Spain
[2] Univ Cantabria, Dept Matemat Estadist & Computac, E-39005 Santander, Spain
关键词
shape preserving representations; critical length; B-bases; trigonometric and hyperbolic functions;
D O I
10.1007/s10444-005-7505-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyze the critical length for design purposes of six-dimensional spaces invariant under translations and reflections containing the functions 1, cos iota and sin iota. These spaces also contain the first degree polynomials as well as trigonometric and/or hyperbolic functions. We identify the spaces whose critical length for design purposes is greater than 2 pi and find its maximum 4 pi. By a change of variables, two biparametric families of spaces arise. We call shape preservation region to the set of admissible parameters in order that the space has shape preserving representations for curves. We describe the shape preserving regions for both families.
引用
收藏
页码:121 / 136
页数:16
相关论文
共 50 条
  • [31] Isometry groups of six-dimensional nilmanifolds
    Kornélia Ficzere
    Ágota Figula
    Aequationes mathematicae, 2023, 97 : 725 - 752
  • [32] Six-dimensional Lie–Einstein metrics
    Rishi Raj Subedi
    Gerard Thompson
    Journal of Geometry, 2021, 112
  • [33] Six-dimensional nilpotent Lie algebras
    Cicalo, Serena
    de Graaf, Willem A.
    Schneider, Csaba
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (01) : 163 - 189
  • [34] Structure of six-dimensional microstate geometries
    de lange, Paul
    Mayerson, Daniel R.
    Vercnocke, Bert
    JOURNAL OF HIGH ENERGY PHYSICS, 2015, (09):
  • [35] SIX-DIMENSIONAL EXCEPTIONAL QUOTIENT SINGULARITIES
    Cheltsov, Ivan
    Shramov, Constantin
    MATHEMATICAL RESEARCH LETTERS, 2011, 18 (06) : 1121 - 1139
  • [36] Stability of six-dimensional hyperstring braneworlds
    Ringeval, C
    Peter, P
    Uzan, JP
    PHYSICAL REVIEW D, 2005, 71 (10):
  • [37] On the six-dimensional origin of the AGT correspondence
    Junya Yagi
    Journal of High Energy Physics, 2012
  • [38] Six-dimensional supergravity and projective superfields
    William D. Linch
    Gabriele Tartaglino-Mazzucchelli
    Journal of High Energy Physics, 2012
  • [39] Hermitian structures on six-dimensional nilmanifolds
    Luis Ugarte
    Transformation Groups, 2007, 12 : 175 - 202
  • [40] ON SIX-DIMENSIONAL FUNDAMENTAL SUPERSTRINGS AS HOLOGRAMS
    Alishahiha, Mohsen
    Mukhopadhyay, Subir
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2009, 24 (01): : 141 - 159