shape preserving representations;
critical length;
B-bases;
trigonometric and hyperbolic functions;
D O I:
10.1007/s10444-005-7505-2
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
We analyze the critical length for design purposes of six-dimensional spaces invariant under translations and reflections containing the functions 1, cos iota and sin iota. These spaces also contain the first degree polynomials as well as trigonometric and/or hyperbolic functions. We identify the spaces whose critical length for design purposes is greater than 2 pi and find its maximum 4 pi. By a change of variables, two biparametric families of spaces arise. We call shape preservation region to the set of admissible parameters in order that the space has shape preserving representations for curves. We describe the shape preserving regions for both families.
机构:
Riso Natl Lab, Mat Res Dept, Ctr Fundamental Res Met Struct Dimens 4, DK-4000 Roskilde, DenmarkRiso Natl Lab, Mat Res Dept, Ctr Fundamental Res Met Struct Dimens 4, DK-4000 Roskilde, Denmark
机构:
Carnegie Mellon Univ, Dept Phys, Pittsburgh, PA 15213 USACarnegie Mellon Univ, Dept Phys, Pittsburgh, PA 15213 USA
Lee, Hyun Min
Papazoglou, Antonios
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris 07, CNRS UMR 7164, CEA, Observ Paris,APC, F-75205 Paris 13, France
Univ Paris 06, CNRS UMR 7095, GReCO IAP, F-75014 Paris, FranceCarnegie Mellon Univ, Dept Phys, Pittsburgh, PA 15213 USA